• Title/Summary/Keyword: 수리조건

Search Result 1,223, Processing Time 0.025 seconds

A study on vertical inlet of inflow characteristics of the Shinwol rainwater storage & drainage system by design condition (신월빗물저류배수시설의 수직유입구 설계조건에 따른 유입특성 분석 연구)

  • Park, Su Ho;Oh, Jun Oh;Park, Jae Hyeon;Park, Chang Keun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.129-138
    • /
    • 2017
  • In this study, the hydraulic model test was performed for the 3 vertical inlets of the Shinwol rainwater storage & drainage system that Seoul City plans to install, and the control discharge value actually measured was analyzed comparing to the value obtained using the theoretical control discharge equation suggested by Yu and Lee (2009). In the results, it was 66~69% compared to the value obtained from theoretical equation showing that the control discharge value according to the theoretical equation is calculated excessively. The sensitivity analysis by design factor was performed using 3 models conducted in this study and 15 hydraulic experiment models conducted in existing research Yu and Lee (2009). The sensitivity analysis of control discharge equation was performed by dividing $Q_{cm}/Q_{cp}$ into 3 ranges. The suggested equation considered only the influence on the tangential intake structure design factor B, z, ${\beta}$, e/B, so ${\theta}$, L considered complex influence suggested equation needed to be more improved.

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

Application of the Electrical Impedance of Rocks in Characterizing Pore Geometry (암석 내 공극구조의 평가를 위한 전기임피던스의 적용)

  • Choo, Min-Kyoung;Song, In-Sun;Lee, Hi-Kweon;Kim, Tae-Hee;Chang, Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.323-336
    • /
    • 2011
  • The hydro-mechanical behavior of the Earth's crust is strongly dependent on the fractional volume and geometrical structure of effective pore spaces. This study aims to understand the characteristics of pores using electrical impedance. We measured the electric impedance of core samples (diameter, 38-50 mm; length, 70-100 mm) of three types of granite (Hwangdeung, Pocheon, and Yangsan) and two types of sandstone (Boryung and Berea) with different porosities and pore structures, after saturation with saline water of varying salinities. The results show that resistance decreases but capacitance increases with increasing salinity of the pore fluid. For a given salinity, the resistivity and formation factor are reduced with increasing porosity of the rocks, and the capacitance increases. Berea sandstone shows anisotropy in resistance, tortuosity, and cementation factor, with these factors being highest normal to bedding planes. This result indicates that the connectivity of pores is weakest normal to bedding. In conclusion, the electrical characteristics of the tested samples are related not only to their porosity but also to the pore geometry.

Study on Design Standards for Nature-like Fishway in Korea (국내 자연형 어도 설계 기준 마련을 위한 고찰 - 자연형 어도 표준 모형안의 문제점과 개선방안을 중심으로 -)

  • Hwang, Sung-Won;Kim, Jin-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • While over 90 percent of fishways are made up with concrete material, nature-like fishways are started to be established as a form of small stream using natural materials. Recently, the central government in collaboration with a university has proposed a 'Standard Model of Nature-like Fishway' with a purpose to provide as a national design standard of nature-like fishway. This study aims to criticize the proposed design model of nature-like fishway and to propose improvements by examining other international cases. As a result, we found problems and limitations of the proposed design model due to the lack of research and experience about making nature-like fishway in Korea. Especially, for designing bypass nature-like fishway we found the lack of studies about structure management strategies, establishment of rocks or pebbles inside the stream, and natural materials. In this sense, more studies about nature-like fishway design adaptable to our environment need to be conducted. In addition, since the proposed design standard for nature-like fishway has been created based on the limited examination of existing domestic cases, it is desirable to improve the design standard on the basis of hydrological and biological research so that they could be adapted effectively to regional and local contexts.

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow (소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향)

  • Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.685-690
    • /
    • 2014
  • The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF