• Title/Summary/Keyword: 수리비

Search Result 1,468, Processing Time 0.096 seconds

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.

Functional Assessment of Gangcheon Replacement Wetland Using Modified HGM (수정 수문지형학적 방법을 적용한 강천 대체습지의 기능평가)

  • Kim, Jungwook;Lee, Bo Eun;Kim, Jae Geun;Oh, Seunghyun;Jung, Jaewon;Lee, Myungjin;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.318-326
    • /
    • 2017
  • Riverine wetlands were reduced and damaged by dredging of rivers and constructing parks in wetlands by Four Rivers Project from 2008 to 2013. Therefore, replacement wetlands were constructed for the compensation of wetland loss by the government. However, It is not enough to manage replacement wetlands. In order to manage the wetlands efficiently, it is necessaty to assess the functions of the wetlands and to manage them according to their functions. Here we performed functional assessments for a replacement wetland called Gangcheon wetland using the modified HGM approach. Hydrological, biogeochemical, animal habitat, and plant habitat functions for the wetland were assessed. To assess the functions, we collected informations for modified HGM approach from the monitored hydrologic data, field survey, published reports and documents for before and after the project, and hydraulic & hydrologic modeling. As the results of the assessment, the hydrological function for the replacement wetland showed 65.5% of the reference wetland, biogeochemical function showed 66.6%, plant habitat function showed 75%, and animal habitat function showed 108.3%. Overall, Gangcheon wetland function after the project was reduced to 78.9% of the function before the project. The decrease in hydrological function is due to the decrease of subsurface storage of water. And the decrease in biogeochemical & pland habitat functions is due to the removal of sandbank around the Gangcheon wetland. To compensate for the reduced function, it is necessary to expand the wetland area and to plant the various vegetation. The modified HGM used in this study can take into account the degree of improvement for replacement wetlands, so it can be used to efficiently manage the replacement wetlands. Also when the wetland is newly constructed, it will be very useful to assess the change of function of the wetland over time.

Studies on Mixed-Seeding of Native Woody and Herb Species (녹화용(綠化用) 자생(自生) 목본식물(木本植物)과 초본식물종자(草本植物種子)의 혼파처리(混播處理)에 관(關)한 연구(硏究))

  • Jeon, Gi-Seong;Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.271-279
    • /
    • 1996
  • This study was conducted to find out the appropriate rates of mixed-seeding of native woody and herb species. It was carried out in greenhouse from 1994 to 1995. The early days germination individuals were $60no./m^2$ in case of woody species for mixed seeding treatment and the treatments were fertilization, soil surface treatment, seeding amount. The investigation factors are the number of individuals of woody and herb species, biomass, height, number of tillers, etc. The mean individuals of Lespedeza bicolor and Amorpha frutzcosa were investigated $1.14no./m^2$, $0.496no./m^2$ in 1995, and Spiraea prunifolia var. simpliciflora and Alnus hirsuta were withering to death. In 1995, the Individuals of Oenothera odorata, Themeda triandra var. japonica, Cymbopogon tortilis var. goeringii, Miscanthus sinensis, Artemisia princeps var. orientalis, Lespedeza cuneata, and Arundinella hirta were investigated $5.06no./m^2$, $1,072no./m^2$, $0no./m^2$, $412.53no./m^2$, $88.6no./m^2$, $8.9no./m^2$, $57.46no./m^2$, respectively, in case of herb species. The height and biomass of Lespedeza bicolor and Amorpha fruticosa showed very fast growth, and those of Themeda triandra var. japonica, Miscanthus sinensis had a similar tendency. For the changes in woody species, according to the seeding amount, there was no significant relationship between species, but It was highly significant in 1995. In case of the herb species, the relationship between the number of individuals and seeding amount was significant for both 1994 and 1995. The most number of tiller was Miscanthus sinensis(21), and showed Themeda triandra var. japonica, Arundinella hirta in descending order. For the mixed seeding of wood and herb species, the number of individuals, height, biomass, tiller of herb species diminished as the seeding amount of herb species increased. It can be concluded that using Lespedeza bicolor and Amorpha fruticosa for woody species and like Arundinella hirta in herb species will be efficient for revegetation measures. It seems, therefore, that the plants of revegetation methods will be used to Lespedeza bicolor, Amorpha fruticosa and Arundinella hirta, and further study is needed on the seeding amount.

  • PDF

Middle-Old Age's Retirement Transition, Old Age Income Security and the Support of Gradual Retirement (중고령자의 퇴직전환 및 노후소득보장과 점진적 퇴직지원)

  • Ji, Eun-Jeong
    • Korean Journal of Social Welfare
    • /
    • v.58 no.3
    • /
    • pp.135-168
    • /
    • 2006
  • This study reviewed pension reform's overall characteristic and(anticipated) positive negative effect in OECD countries's and then analysed middle-old age's retirement transition and determinants of full/gradual retirement through the $3{\sim}7th$ Korea Labor and Income Panel considering that Korea has been aging society quickly and it is necessary to suggest not only solution of early retirement and working age reduction but also pension reform. As a result of this study, about 1/4 of 50 years and older have been continuing to work through various pathways after retirement and 98% among fully retired older who passed by re-employment step of occupational status including retirement are still searching for jobs. This showed that it is also inappropriate to typical retirement concept itself on the lines of labour market participation in Korea and part-time/temporary work or self-employment have been used by means of alternatives of maintaining works for middle-old ages. However, the duration of changed occupational status of gradual retirees is mostly only $1{\sim}2$ years. Therefore it is necessary to support the gradual retirement to minimize a term of income insecurity and promote the work of the old ages who have will and capacity of work. Most of all, partial pension system which is main program of gradual retirement, should make the rules that beneficiaries are those who age less than pensionable age and benefit levels should be actuarial fairness together with pension system and provide substantial help. But, the introduction of partial pension system is not the only way to solve and needs overall social economic approach. Especially guarantee the increase of quantitative qualitative employment for middle-old ages linking labor market policy and supporting gradual retirement not ought to be abused to force the part time works and early retirement route against their own will.

  • PDF

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis (소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석)

  • Jang, Ik-Sik;Jeon, Hyeong-Soon;Ha, Tae Ju;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.113-122
    • /
    • 2013
  • In this study, the traditional structure of the impact on the stability analysis. Korean traditional landscape architecture column space of stonework stable composition as the foundation of the fence for a long time been known to fall down and not maintained. The destination of research Ohgokmun Damyang Soswaewon fence which is in harmony with nature is one of the traditional structures that affect its shape without being kept so far came true. This includes our ancestral wisdom and that wisdom can guess guesswork. But I let the traditional reproduction incidence structures frequently. This deviation from the traditional method of construction application of shorthand stand. Thus, the subject of this study, the factors that do not fall down fences Ohgokmun solution is to indirectly gain the weak. In addition, epidemiological studies and the methods of calculation of the inferred physical examination, the results of the analysis were derived through the following. First, the internal factors of the fence Ohgokmun constituting the structural member and the coupling of the scheme. 1) based on stable ground. Greater role in the country rock The fact that the settlement will have no symptoms. 2) to minimize the friction caused by hydrological water to remove the two-pronged process through stone work building form and menu sustaining power in hydrology and flooding made against the bypass channel. 3) due to the load bearing capacity and durability to withstand the strength of the material and the construction of structures in the form of a dispersion of power between each individual to maximize the process of getting traction was applied. Second, external factors Ohgokmun fence the results obtained through the calculation of the dynamics of repair, is greatly affected by the wind and the water gate of the fence, but the action of the structural stability of the lack of power that hurt enough conclusion. In this study, the results of the structure of internal and external influence as well through the structure can be viewed as composed consisting. However, over the next follow-up in terms of climate and environmental factors due to the fact that the fall might.

Development of Rainfall-runoff Analysis Algorithm on Road Surface (도로 표면 강우 유출 해석 알고리즘 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Kwak, Chang Jae
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.223-232
    • /
    • 2021
  • In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

An Analysis of Termite(R. speratus kyushuensis) Damage to Nationally Designated Wooden Architectural Heritage in Korea (국가지정 목조건축문화재의 흰개미(R. speratus kyushuensis) 피해 현황 분석)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Termites are a group of social insects that are one of the primary causes of damage to wooden architectural heritage. Since termite damage impairs the authenticity and structural stability of cultural heritage, it is imperative to prevent it. This study examines the extent of termite damage to wooden architectural heritage as part of efforts to prevent termite damage to nationally designated wooden architectural heritage sites across the country. The extent of termite damage to each cultural heritage was assessed qualitatively and quantitatively and comparatively analyzed by region using the results of the "Investigation on Biological Damage to Wooden Architectural Heritages" conducted by the National Research Institute of Cultural Heritage from 2016 to 2019. It involved 362 nationally designated wooden architectural heritages(25 national treasures, 157 treasures, 180 national folklore cultural heritages) and 1,104 buildings. The results were as follows: termite detection dogs reacted at 317(87.6%) of the 362 wooden heritages, with visible termite damage observed in 185 cases(51.1%). Furthermore, termite damage was confirmed using one of two methods(detection dogs or visual inspection) in 324 cases(89.5%). Of the 1,104 buildings, termite detection dogs reacted at 668(60.5%), while 339(30.7%) showed visible termite damage. Employing one of the two methods, damage was confirmed in 702 buildings(63.6%). The country was categorized into nine regions(Seoul Metropolitan Area, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, Gyeongnam, and Jeju) to examine the termite damage rate and the degree of damage to each cultural heritage according to location. Termite detection dogs reacted to more than 70% of the cultural heritage in all regions. Visible damage was minimal in the Seoul metropolitan area(32.1%) and Gangwon(21.4%) but severe in Chungnam(65.6%), Jeonnam(67.3%), and Gyeongnam(68.2%). By quantifying the degree of termite damage of each cultural heritage as a ratio of the absence of termite damage among the total absence, the average termite damage of the cultural heritage across the country was 9.2%. Regional variance analysis showed that the cultural heritage in Jeonbuk and Jeonnam showed a statistically significantly higher degree of termite damage than the cultural heritage in the Seoul metropolitan area, Chungbuk, and Gyeongbuk. This paper comprehensively analyzed termite damage to nationally designated wooden architectural heritage. The findings are expected to be valuable in establishing policies for the preservation and management of cultural heritage sites in the future.