• Title/Summary/Keyword: 수렴성능

Search Result 910, Processing Time 0.029 seconds

Variable Dimension Affine Projection Algorithm (가변 차원 인접투사 알고리즘)

  • Choi, Hun;Kim, Dae-Sung;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.410-416
    • /
    • 2003
  • In the affine projection algorithm(APA), the projection dimension depends on a number of projection basis and of elements of input vector used for updating of coefficients of the adaptive filter. The projection dimension is closely related to a convergence speed of the APA, and it determines computational complexity. As the adaptive filter approaches to steady state, convergence speed is decreased. Therefore it is possible to reduce projection dimension that determines convergence speed. In this paper, we proposed the variable dimension affine projection algorithm (VDAPA) that controls the projection dimension and uses the relation between variations of coefficients of the adaptive filter and convergence speed of the APA. The proposed method reduces computational complexity of the APA by modifying the number of projection basis on convergence state. For demonstrating the good performances of the proposed method, simulation results are compared with the APA and normalized LMS algorithm in convergence speed and computational quantity.

Relation Extraction based on Neural-Symbolic Structure (뉴럴-심볼릭 구조 기반의 관계 추출)

  • Oh, Jinyoung;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.115-118
    • /
    • 2020
  • 딥러닝은 자연어처리 분야에서 우수한 성능을 보이고 있다. 하지만 우수한 성능을 달성하려면 많은 학습 데이터와 오랜 학습 시간이 필요하다. 우리는 딥러닝과 기호 규칙을 함께 사용하는 뉴럴-심볼릭 방법을 이용하여 딥러닝만으로 학습한 모델의 성능을 능가하는 방법을 제안한다. 딥러닝의 한계를 극복하기 위해서 관계추출에서 규칙 결과와 딥러닝 결과와의 불일치도를 추가한 구조를 설계하였다. 제안한 구조는 한국어 데이터에 대해서 우수한 성능을 보였으며, 빠른 성능 수렴이 이루어지는 것을 확인하였다.

  • PDF

A Study on the Feedback Adaptive Algorithm and its Applications for Detecting Line Signals (주기 신호 검출을 위한 회귀적 적응 알고리즘 및 응용에 관한 연구)

  • 정해택;김중규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.4
    • /
    • pp.83-92
    • /
    • 1999
  • 본 논문에서는 Jue Chang 과 John R. Glover 가 1993년에 제안한 회귀적 적응 주기 신호 검출기[1]를 소개하고 이를 구현하기 위한 최적의 실시간 알고리즘을 제안하여 회귀적 주기 신호 검출기의 실용적인 응용 예를 제시하였다. 회귀적 적응 주기신호 검출기(FALE:Feedback Adaptive Line Enhancer)는 기존의 적응 주기 신호 검출기에 회귀 경로를 달아줌으로써, 필터 차수를 같게 했을 때 낮은 신호 대 잡음비 환경 하에서 더 높은 필터 이득과 더 낮은 추정 오차를 얻을 수 있다. 회귀 경로를 통해 들어오는 필터 출력 신호는 회귀 이득 상수 값에 따라 전체 시스템의 성능이 달라지므로 최적의 회귀 이득 상수를 찾아내는 것이 중요하며 이는 회귀 이득 상수를 변화시키며 최적의 결과값(최소 추정오차)을 유도하는 실험을 통해 얻을 수 있다. 한편, 이를 구현하는 문제에 있어서는 일잔 최적의 회귀 이득 상수 값이 정해지면 회귀 이득 상수가 초기 값으로부터 최적 값에 도달하는 변화율과 변화 유형이 시스템의 실시간 구현 및 성능에 중요한 영향을 미치게 된다. 본 논문에서는 실험을 통해 최적의 구현 알고리즘을 찾아냄으로써 Jue Chang 과 John R, Glover가 제시한 이론적인 수렴율과 수렴 성능을 유지하면서 실시간으로 동작하는 시스템을 구현하고 모의실험을 통한 성능분석 결과를 제시하였다.

  • PDF

BER Performance Improvement of Data-Recycling Equalizer in Time-varing Fading Mobile Communication Channel (시변 페이딩 이동무선채널에서 Data-Recycling 등화기에 의한 BER 성능 개선)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.581-588
    • /
    • 1997
  • Time-variant mobile radio fading channels distort amplitude, frequency and phase of a transmitted signal. On channels that have time-variant spectral nulls, the conventional equalizers which have low convergence speed and high sensitiveness to phase distortion yields very poor error rate performance. In this paper, the performance of a combined structure with the data-recycling algorithm and fractionally spaced equalizer (FSE) has been investigated on time-variant mobile radio fading channels through computer simulations and compared to other kinds of equalizers. The results show that the data-recycling FSE has excellent capabilities for tracking rapidly time-variant mobile channels and effective compensation for phase distortion.

  • PDF

Multi-level MCMA Blind Equalization Technique using M-ary QAM signal (M-ary QAM 신호를 적용한 다단계 MCMA 블라인드 등화 기법)

  • 김성미;조주필;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1453-1459
    • /
    • 2000
  • In this paper, the method which compensates the problem occurred in case M-ary QAM is applied to system is proposed. The conventional CMA has two problems, First, when M is larger than 4, it has a poor performance of equalizer due to a degradation of convergence property. Second, the phase of conventional CMA is distorted after convergence. To compensate these problems, we set the proper interval according to modulated signal when the signal using 16-QAM modulation method is equalized and use a different equalizing method for each interval. Using this method, the ISI is reduced and the performance of equalizing is improved. Also, the computer simulation using residual ISI shows an improved performance.

  • PDF

Accelerating the EM Algorithm through Selective Sampling for Naive Bayes Text Classifier (나이브베이즈 문서분류시스템을 위한 선택적샘플링 기반 EM 가속 알고리즘)

  • Chang Jae-Young;Kim Han-Joon
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.369-376
    • /
    • 2006
  • This paper presents a new method of significantly improving conventional Bayesian statistical text classifier by incorporating accelerated EM(Expectation Maximization) algorithm. EM algorithm experiences a slow convergence and performance degrade in its iterative process, especially when real online-textual documents do not follow EM's assumptions. In this study, we propose a new accelerated EM algorithm with uncertainty-based selective sampling, which is simple yet has a fast convergence speed and allow to estimate a more accurate classification model on Naive Bayesian text classifier. Experiments using the popular Reuters-21578 document collection showed that the proposed algorithm effectively improves classification accuracy.

Tabu Search using Balanced Neighborhood Production Strategy (균형 있는 이웃 해 생성 전략을 통한 타부 탐색)

  • Jeon, Dae-Seuk;Jeon, Hyang-Sin;Kwon, Kye-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.789-792
    • /
    • 2003
  • 타부 탐색은 타부 전략 기법과 최급 강하 알고리즘이 결합된 알고리즘이다. 이는 한번 방문한 해는 다시 방문하지 않음으로써 지역 최적해에 수렴하지 않고 새로운 방향으로 움직이게 하여 공간 탐색 능력 효율을 높인다. 그러나 기존의 타부 탐색에서 이웃 해를 생성하는 방법에 따라 성능이 많이 좌우된다. 좋지 않은 이웃 해를 생성하는 탐색에서는 얻고자 하는 최적해에 수렴하는 시간이 많이 걸린다. 따라서 이웃 해를 생성할 때 해밍 거리를 고려하여 균형 있는 이웃 해론 생성하고, 해 공간은 탐색함으로써 우수한 최적해를 얻게 됨을 본 논문에서는 보여주고 있다. 이는 다양성도 보장되므로 최적해에 수렴해 가는 속도 또한 빠른 것을 보여주고 있다.

  • PDF

The Improved Evolutionary Programming with Direction Vectors (방향성 벡터를 갖는 개선된 진화프로그래밍)

  • 박진현;배준경
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.542-547
    • /
    • 2000
  • 진화프로그래밍(Evolutionary Programming : EP)은 최적화 문제에 있어서 매우 유용한 기법으로 자연선택의 원리를 모방한 탐색알고리즘이다. EP는 기존의 최적화 알고리즘에 비하여 여러해를 동시에 탐색하는 전역탐색(global search)방법이므로 국부수렴(local convergence)의 가능성이 줄어들고, 최적화 파라메터 영역의 연속성과 미분치의 존재성과 같은 조건이 필요 없는 장점을 갖는다. 이러한 장점에도 불구하고, EP의 탐색영역이 초기조건 및 최적화 파라메터들의 랜덤 생성 그리고 최적화에 필요한 전략적 파라메터들에 의하여 탐색 영역이 결정되고, 수렴성이 느린 단점을 갖는다. 이러한 문제를 해결하기 위하여, 본 연구에서는 빠른 수렴성과 다양성을 갖는 개선된 EP을 제안하고, 제안된 방향성 벡터를 갖는 개선된 EP를 함수 최적화 문제에 적용하여 그 성능의 유용성을 보이고자 한다.

  • PDF

Evolutionary Multi-Objective Optimization Algorithms for Converging Global Optimal Solution (전역 최적해 수렴을 위한 다목적 최적화 진화알고리즘)

  • Jang, Su-Hyun;Yoon, Byung-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.401-404
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 적응적가중치를 이용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기위해 파레토 순위와 밀도에 대한 적응적 가중치를 적용하여 전체 진화과정에서 파레토 순위와 밀도가 전체 진화 개체집합의 상태를 고려하여 영향을 미치도록 하였다. 제안한 방법을 많은 지역해들을 포함하는 ZDT4문제에 적용한 결과 비교적 우수한 수렴 결과를 보였다.

  • PDF

A Comparison Study on Reinforcement Learning Method that Combines Supervised Knowledge (감독 지식을 융합하는 강화 학습 기법들에 대한 비교 연구)

  • Kim, S.W.;Chang, H.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.303-308
    • /
    • 2007
  • 최근에 제안된 감독 지식을 융합하는 강화 학습 기법인 potential-based RL 기법의 효용성은 이론적 최적 정책으로의 수렴성 보장으로 증명되었고, policy-reuse RL 기법의 우수성은 감독지식을 융합하지 않는 기존의 강화학습과 실험적인 비교를 통하여 증명되었지만, policy-reuse RL 기법을 potential-based RL 기법과 비교한 연구는 아직까지 제시된 바가 없었다. 본 논문에서는 potential-based RL 기법과 policy-reuse RL 기법의 실험적인 성능 비교를 통하여 기법이 policy-reuse RL 기법이 policy-reuse RL 기법에 비하여 더 빠르게 수렴한다는 것을 보이며, 또한 policy-reuse RL 기법의 성능은 재사용하는 정책의 optimality에 영향을 받는다는 것을 보인다.

  • PDF