• Title/Summary/Keyword: 수력학 특성

Search Result 38, Processing Time 0.024 seconds

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

Difference in Shoreline Flora According to the Usage of Reservoirs in Korea (우리나라 저수지의 용도에 따른 호안 식물상 차이)

  • Cho, Hyunsuk;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.339-347
    • /
    • 2015
  • Differences in characteristics of flora and environmental factors of geomorphology, hydrology, water quality and soil were investigated in the shoreline of total 35 reservoirs according to their usages of waterpower generation, agricultural water supply, residential and industrial water supply and flood control in Korea. The number of plant species, floral structure and characteristics of species traits in the shoreline of reservoirs were different according to their usage. From the results of stepwise regression analysis, the total number of vascular plant species was increased at the environment of the higher flood frequency at the median water level and the longer exposure duration of the shoreline. The results of principal coordinates analysis and cluster analysis showed that the shoreline flora was classified as the 3 types of 1) flood control and residential and industrial water supply, 2) agricultural water supply and 3) waterpower generation reservoirs. The water level fluctuation, flood frequency at the median water level, lake water quality index and exposure duration of the shoreline were selected as important environmental factors affected on the characteristics of shoreline flora. The species richness of total flora and hydrophytes, especially submerged macrophytes, were much higher in the reservoirs for the purpose of the waterpower generation in which mesotrophic water quality and stable water levels were maintained. Annual or biennial ruderals were established on the ephemeral drawdown zone of flood control, residential and industrial water supply reservoirs which have oligotrophic or mesotrophic water quality and wide range of water level fluctuation. The floating hydrophytes were differentially dominated in the littoral zones of the agricultural water supply reservoirs with a mesotrophic or eutrophic water quality and a medium water level fluctuation. In conclusion environmental factors related to water level fluctuation and water quality were different and then the floral characteristics of shoreline were distinguishable according to usage of Korean reservoirs.

The Effect of Hydraulic Efficiency on the Design Variables of an Overtopping Wave Energy Converter (월파수류형 파력발전구조물의 상부 사면 설계변수에 따른 수력학적 효율 영향 연구)

  • An, Sung-Hwan;Kim, Geun-Gon;Lee, Jong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.168-174
    • /
    • 2022
  • In a wave power generation system, the overtopping system is known as an overtopping wave energy converter (OWEC). The performance of an OWEC is affected by wave characteristics such as height and period because its power generation system is sensitive to those characteristics; these, as well as wave direction, depend on the sea. As these characteristics vary, it is hard for the OWEC to produce power in a stable manner. Therefore, it is necessary to find an appropriate shape for an OWEC, according to the characteristics of the sea it is in. This research verified the effect of the design of the OWEC ramp on the hydraulic efficiency using the smoothed particle hydrodynamics (SPH) particle method. A total of 10 models were designed and used in simulations performed by selecting the design parameters of the ramp and changing the attack angle based on those parameters. The hydraulic efficiency was calculated based on the rate of discharged water obtained from the analysis result. The effect of each variable on the overtopping performance according to the shape of the ramp was then confirmed. In this study, we present suggestions for determining the direction for an appropriately shaped OWEC ramp, based on a specific sea area.

Migration and Retardation Properties of Uranium through a Rock Fracture in a Reducing Environment (환원환경에서 암반 균열을 통한 우라늄 이동 및 지연 특성)

  • Baik, Min-Hoon;Park, Chung-Kyun;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • In this study, uranium migration experiments have been performed using a natural groundwater and a granite core with natural fractures in a glove-box constructed to simulate an appropriate subsurface environment. Groundwater flow experiments using the non-sorbing anionic tracer Br were carried out to analyze the flow properties of groundwater through the fracture of the granite core. The result of the uranium migration experiment showed a breakthrough curve similar to that of the non-sorting Br. This result may imply that uranium migrates as anionic complexes through the rock fracture since uranium can form carbonate complexes at a given groundwater condition. The distribution coefficient $K_d$ of the uranium between the groundwater and the fracture filling material was obtained as low as 2.7 mL/g from a batch sorption experiment. This result agrees well with the result from the migration experiment, showing a faster elution of the uranium through the rock fracture. In order to analyze retardation properties of the uranium through the rock fracture, the retardation factor $R_d({\sim}16.2)$ was obtained by using the $K_d$ obtained from the batch sorption experiment and it was compared with the $R_d({\sim}14.3)$ obtained by using the result from the uranium migration experiment. The values obtained from the both experiments were very similar to each other. This reveals that the retardation of the uranium is mainly occurred by the fracture filling material when the uranium migrates through the fracture of a granite core.

  • PDF

An Electromagnetic Shock Wave Generator Employing a Solenoid Coil for Extracorporeal Shock Wave Therapy: Construction and Acoustical Properties (체외 충격파 치료술을 위한 솔레노이드 코일을 이용한 전자기식 충격파 발생기: 구성 및 음향학적 특성)

  • Choi Min Joo;Lee Jong Soo;Kang Gwan Suk;Paeng Dong Guk;Lee Yoon Joon;Cho Chu Hyun;Rim Geun Hie
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.271-281
    • /
    • 2005
  • An electromagnetic type shock wave generator suitable for extracorporeal shock wave therapy has been constructed by employing a solenoid coil. The Property of the shock waves produced by the shock wave generator was evaluated using a needle hydrophone. It was shown that, as the capacitor discharging voltage increased from 8 to 18 kV, the Positive Peak Pressure (P+) of the shock wave increased non-linearly from 10 to 77 Wa. In contrast. the negative peak Pressure (f) varied between -3.2 and -6.8 MPa. had its absolute maximum of -6.9 ma at 14 kV The peak amplitudes P+ measured repeatedly under the same voltage setting varied within $5\;\%$ from mean values and this is very small compared to about $50\;\%$ for electrohydraulic type shock wave generators. It could be observed, from the hydrophone signal recorded over 1 ms. several sequential acoustic impulses representing bubble collapses. namely. acoustic cavitation. induced by the shock wave. A technique based on wavelet transformation was used to accurately measure the time delay between the 1st and 2nd collapse known to be closely related to the shock strength. It was observed that the measured time delay increased almost linearly from 120 to $700\;{\mu}s$ with the shock wave Pressure P+ increasing from 10 to 77 MPa.

Possibilities of Wasabia japonica Matsum Culture using Cold Water of the Soyang River Dam (소양강댐의 냉수(冷水)를 이용한 고추냉이 재배 가능성)

  • Lee, Sung-Woo;Seo, Jeong-Sik;So, Ho-Seob;Beon, Hak-Su;Park, Jang-Hwan;Kim, Suk-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.4
    • /
    • pp.294-300
    • /
    • 1996
  • We performed an experiment to confirm the possibility of wasabi culture using the wat­er of the Soyang River Dam in Chunchon and the ground water in Suwon. Water mineral content of Soyang River except for P was less than that of ground water of Suwon. Dis­solved oxgen and E C of Chunchon was proper to culture wasabi but E C and dissolved oxgen of Suwon was not suitable for that. Water temp. of Soyang river was very changable by month while that of the ground water in Suwon was kept constantly. In Soyang river of Chunchon the month that water temp. show $8{\sim}18^{\circ}C$, optimal growth temp., was May to Nov. and the month that water temp. show less than $6^{\circ}C$, growth limit temp., was $Jan.\;{\sim}\;Feb.$ of Chunchon. Rhizome weight of main stem in Chunchon and Suwon was 63g and 22g per plant and rate of maketable rhizome was each 80%, 0% by culture of 32 months to include raising see­dling period of 13 months. Dry matter partitioning ratio of petiole in Soyang river of Chunchon was the highest of all others but it was lowest of all others in ground water of Suwon. Rhizome weight of main stem in Chunchon was showed possitive correlation with plant height and fresh top weight and in Suwon it was showed possitive correlation with root weight and high possitive correlation with No. of total leaves and No. of tillers.

  • PDF

Preferential Flow as Tested by Breakthrough Curves of Cl- and Cu2+ from Saturated Undisturbed Soil Core Samples under Steady Flow Conditions (포화 불교란 토양시료의 Cl- 및 Cu2+ 출현곡선에 의한 preferential flow의 검증)

  • Yoo, Sun-Ho;Han, Kyung-Hwa;Ro, Hee-Myong;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • Preferential flow has recently been the subject of increasing interest because these phenomena contribute to solute transport in soils. Commonly, preferential flow paths are associated with macropores or highly structured soils. We presented an analysis of the measured breakthrough curves (BTCs) of $Cl^-$ and $Cu^{2+}$ ions to test the occurrence of preferential flow in soils using miscible displacement technique under steady flow conditions. We also analyzed soil water retention curves and from this curves induced cumulative pore size distribution of undisturbed soils, which sampled from Ap1, B1, and C horizons of Songjeong series soils (the fine loamy, mesic family of Typic Hapludults). In this study, miscible displacement experiment on C horizon was excluded, because it is structureless sandy loam with saturated hydraulic conductivity of $5.2cmhr^{-1}$. The saturated hydraulic conductivity of Ap1 horizon was $2.0cmhr^{-1}$, which was about 7 times higher than that of B1 horizon ($0.27cm hr^{-1}$). Cumulative pore size distribution predicted that Ap1 horizon had more macropores (pore diameter larger than $49{\mu}m$, equivalent to -6 kpa of soil matric potential) than B1 horizon. The hydrodynamic dispersion coefficient from chloride BTCs was estimated as $1.3cm^2hr^{-1}$ for B1 and $34cm^2hr^{-1}$ for Ap1 horizon. However the retardation factors of B1 and Ap1 horizon were significantly different, i.e. 1 and 0.6, respectively, which means that there was distinct partition between mobile water and immobile phase in Ap1 horizon. The copper retardation effect of Ap1 horizon was less than that of B1 horizon, even though cation exchange capacity of Ap1 horizon was higher than that of B1 horizon. Thus, breakthrough curves of $Cl^-$ and $Cu^{2+}$ obviously showed the probability that preferential flow would occur in Ap1 horizon.

  • PDF