• Title/Summary/Keyword: 수력모델

Search Result 143, Processing Time 0.024 seconds

Development of Backup Calculation System for a Nuclear Steam Supply System Thermal-Hydraulic Model ARTS (Advanced Real-time Thermal Hydraulic Simulation) of the W/H Type NPP (W/H형 원전 시뮬레이터용 핵 증기공급 계통 열수력모델 ARTS(Advanced Real-time Thermal Hydraulic Simulation)의 보조계산체계 개발)

  • 서재승;전규동
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The NSSS (Nuclear Steam Supply System) thermal-hydraulic programs adopted in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited compulsational capability at that time, they usually used very simplified physical models for a real-time simulation of NSSS thermal-hydraulic transients, which entails inaccurate results and, thus, the possibility of so-called "negative training", especially for complicated two-phase flows in the reactor coolant system. In resolve the problem, KEPRI developed a realistic NSSS T/H program ARTS which was based on the RETRAN-3D code for the improvement of the Nuclear Power Plant full-scope simulator. The ARTS (based on the RETRAN-3D code) guarantees the real-time calculations of almost all transients and ensures the robustness of simulations. However, there is some possibility of failing to calculate in the case of large break loss of coolant accident (LBLOCA) and low-pressure low-flow transient. In this case, the backup calculation system cover automatically the ARTS. The backup calculation system was expected to provide substantially more accurate predictions in the analysis of the system transients involving LBLOCA. The results were reasonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with FSAR and the AMSI/ANS-3.5-1998 simulator software performance criteria.

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

The development of MMI for KINS NPA (KINS W/H형 원전분석기 MMI 개발)

  • 서인용
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.89-93
    • /
    • 2004
  • 본 MMI를 통해 개발된 웨스팅하우스 950 Mwe 최적 NPA는 기존의 단순한 Point Kinetics 모델이 아닌 정교한 3D 실시간 노심모델과 RETRAN 코드를 기반으로 하는 실시간 NSSS 열수력 모델(ARTS)이 통합된 모델을 갖추었으며, 해당형식 발전소(Westinghouse 3 Loop PWR Plant)의 여러 가지 과도사고를 실시간으로 정상, 비정상, 비상운전 모의할 수 있도록 개발되었다. 이 NPA는 기존의 유닉스 환경이 아닌 일반 범용 PC 서버와 윈도우즈 환경(Operating System)이라는 개방형 서버-클라이언트 구조를 채택하여 저렴하고 실용적인 시스템을 추구하였다. 다양한 색상 표현이 가능한 GUI 툴을 이용하여 노심 내부의 3D 열중성자 속 분포등 사용자가 직관적으로 알 수 있는 쉬운 구성의 클라이언트 제어 시스템을 개발, 연계하여 사용자의 편의성을 도모하였다.

  • PDF

Cavitation flow Analysis of Hemisphere Cylinder Affected by the Variation of Model Constants (캐비테이션 모델 상수가 반구형 실린더 주위의 캐비테이션 유동에 미치는 영향)

  • Song K. J.;Yu H. R.;Kim D. H.;Kim C. K.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.223-227
    • /
    • 2005
  • 최근 전산 유체의 발달로 이상 유동해석의 캐비테이션 모델 적용 방법이 발전되어 왔으나 다양한 수력학적 시스템에서 발생하는 캐비테이션 유동은 난류이며 물과 공기 사이에서의 복잡한 상호 작용을 가지고 있으므로 그 적용 예가 아직은 미흡한 상태이다. 본 연구에서는 수중에서의 캐비테이션 해석과 이상 유동 해석을 위한 코드 개발 및 검증을 목적으로 3차원 회전체 주위의 캐비테이션 유동을 여러 가지 조건들의 변화를 적용하여 해석하였다. 또한 캐비테이션 발생과 관련한 다른 난류 모델에 적용하여 비교 분석을 수행하였다. 해석을 위한 모델의 지배방정식은 이상유동 Wavier-Stokes 방정식, 질량$\cdot$모멘텀 방정식의 혼합된 형태로 구성되어 있으며 방정식의 해를 구하기 위한 방법으로 유한차분법을 이용하였다. 해석결과의 신뢰성을 고려하여 반구형 실린더 주위의 캐비테이션 유동의 실험치와 비교 분석하였다. 그 결과, 본 연구의 수치 해석 방법과 실험적 방법의 결과가 강한 양의 상관관계를 가짐을 알 수 있었으며, 이러한 수치적 뒷받침은 본 연구의 전산수치 해석 방법이 앞으로의 여러 유동 해석으로의 적용 가능성을 보여준다.

  • PDF

Development of Westinghouse 950 MWe-type NPA (WH형 950MWe 원전 운전최적분석기 개발)

  • 홍진혁
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.473-483
    • /
    • 2003
  • 본 논문은 안전해석 등에 사용되는 RETRAN-3D 등 최적해석 코드를 기반으로 하면서도 복잡한 하드웨어 없이 간편한 GUI (Graphic User Interface)를 이용하여 광범위한 발전소 과도상태를 해석하기 위한 다양한 기능을 통해 시뮬레이션 조작을 쉽게 할 수 있는 웨스팅하우스형 950MW급 최적 원전운전분석기 (Nuclear Plant Analyzer)를 다루고자 한다. WH형 950MW 원전 운전최적분석기는 기존의 단순한 Point Kinetics 모델이 아닌 정교한 3D 실시간 노심모델과 RETRAN 코드를 기반으로 하는 실시간 NSSS 열수력 모델 (ARTS)이 통합된 모델을 갖추고 있으며, 해당형식발전소 (WH 3 Loop PWR Plant : 고리 3,4호기, 영광1,2호기 원전)의 여러 가지 과도사고를 실시간으로 정상, 비정상, 비상운전 등으로 모의할 수 있도록 개발되었다. 모의결과 주요 과도 상태의 결과가 해석한 결과와 잘 일치하였으며, 해당형식 발전소 과도 분석이나 규제요원 훈련에 이용될 계획이다.

  • PDF

Study of a Model Turbine Design Case Via Application of Spiral Case and Draft Tube Shape in Hydraulic Power Plant Modernization (수력 현대화 개·대체 시 스파이럴 케이스와 흡출관 형상에 따른 모델수차 설계 적용사례 연구)

  • Park, Nohyun;Kim, Jin-Hyuk;Kim, Seung-Jun;Hyun, Jungjae;Choi, Jongwoong;Cho, Yong
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • Recently, turbines operating in hydro power plants are required to undergo renovation and modernization due to their age exceeding 30 years. In the process of renovation or modernization, a performance test of the scaled-down model is necessary to verify the performance of the real-size model. This model test method, with criteria that is similar to that of a real turbine, is the most economical and important method. Furthermore, the shapes of the runner and guide vane can be modified or replaced easily. However, during the process of modernization, the components with the spiral casing and draft tube are impossible to repair or replace because of the buried ground. Thus, in this study, numerical analysis is conducted to investigate the hydraulic performance based on the difference between the two-dimensional computer-aided design (CAD) shape and the real three-dimensional scan shape of the spiral casing and draft tube.

Prediction of Thermal-Hydraulic Phenomena in the LBLOCA Experiment L2-3 Using RELAP5/MOD2 (RELAP5/MOD2 코드에 의한 대형냉각재 상실사고 모사실험 L2-3의 열수력 현상 예측)

  • Bang, Young-Seok;Chung, Bub-Dong;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.56-65
    • /
    • 1991
  • The LOFT LOCE L2-3 was simulated using the RELAP5/MOD2 Cycle 36.04 code to assess its capability in predicting the thermal-hydraulic phenomena in LBLOCA of a PWR. The reactor vessel was simulated with two core channels and split downcomer modeling for a base case calculation using the frozen code. The result of the base calculation showed that the code predicted the hydraulic behavior, and the blowdown thermal response at high power region of the core reasonably and that the code had deficiencies in the critical How model during subcooled-two-phase transition period, in the CHF correlation at high mass flux and in the blowdown rewet criteria. An overprediction of coolant inventory due to the deficiencies yielded the poor prediction of reflood thermal response. Improvement of the code, RELAP5 / MOD2 Cycle 36.04, based on the sensitivity study increased the accuracy of the prediction of the rewet phenomena.

  • PDF

Priority assessment and estimation of annual power generation for potential development site of hydroelectric dam in North Korea (북한지역 수력발전댐 개발가능지점에 대한 연간가능발생전력량 분석 및 개발 우선순위 평가)

  • Kwon, Minsung;Kim, Tae-Woong;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.929-939
    • /
    • 2018
  • In North Korea, hydropower which occupies about 63% of power generation is a major electric power source, and North Korea has many advantages in the geographical for developing hydroelectric power. In this study, Information on the basin and dam capacity for 33 potential development site of hydroelectric dam was analyzed using DEM, and potential annual power generation was estimated by applying results of long-term runoff simulation with MWSWAT model for recent 30-year. The potential annual power generation at 33 dam was estimated to be about 28% of the current hydroelectric power in North Korea. In addition, a priority of dam development in each province was assessed by estimating the scale of an industry and prospecting the population change in the future. And a priority for dam development within the province was estimated based on the dam capacity and the potential annual power generation. The priority of each province was ranked in order of Pyeongannamdo, Hamgyungnamdo, Hamgyungbukdo, Hwanghaebukdo, Pyeonganbukdo, Jagangdo, Ryanggangdo, Hwanghaenamdo, and Gangwondo. The results of this study can be used as an initial review data for advancing to hydropower development project in North Korea.

The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump (원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안)

  • Hee Chan Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.