• 제목/요약/키워드: 수량 효율

Search Result 823, Processing Time 0.019 seconds

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

Effects of Rye Silage on Growth Performance, Blood Characteristics, and Carcass Quality in Finishing Pigs (호맥 사일리지의 급여기간이 비육돈의 생산성, 혈액 성상 및 도체특성에 미치는 영향)

  • Shin, Seung-Oh;Han, Young-Keun;Cho, Jin-Ho;Kim, Hae-Jin;Chen, Ying-Jie;Yoo, Jong-Sang;Whang, Kwang-Youn;Kim, Jung-Woo;Kim, In-Ho
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.392-400
    • /
    • 2007
  • This experiment was conducted to evaluate effects of various periods of rye silage feeding on the growth performance, blood characteristics, and carcass quality of finishing pigs. A total of sixteen [($Landrace{\times}Yorkshire{\times}Duroc$)] pigs (90.26 kg in average initial body weight) were tested in individual cages for a 30 day period. Dietary treatments included 1) CON (basal diet), 2) S10 (basal diet for 20 days and 3% rye silage for 10 days) 3) S20 (basal diet for 10 days and 3% rye silage for 20 days) and 4) S30 (3% rye silage for 30 days). There were no significant differences in the ADG and gain/feed ratio among the treatments(p>0.05), however the ADFI was higher in pigs fed the CON diet than with pigs fed diets with rye silage (p<0.05). The DM digestibility was higher with the S20 diet than with the S30 diet (p<0.05). With regard to blood characteristics, pigs fed rye silage had a significantly reduced cortisol concentration compared to pigs fed the CON diet (p<0.05). The backfat thickness was higher with the CON diet than with the S20 or S30 diets (p<0.05). Regarding the fatty acid contents of the leans, the C18:0 and total SFA were significantly higher with the CON diet than with the other diets (p<0.05). However, the C18:1n9, total MUFA and UFA/SFA levels were significantly lower with the CON diet than the other diets (p<0.05). Regarding the fatty acid contents of fat, the levels of C18:1n9 and MUFA were similar with the S20 and S30 diets, however, these levels were higher than with the CON or S10 diets (p<0.05). In conclusion, feed intake and DM digestibility were affected by rye silage, and the cortisol concentration, backfat thickness and fatty acid composition of pork were positively affected by feeding pigs rye silage.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.