• Title/Summary/Keyword: 수도권 급행철도

Search Result 33, Processing Time 0.017 seconds

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Nonlinear Seismic Performance Evaluation of an Operating TBM(Tunnel Boring Machine) Tunnel (공용 중인 TBM(Tunnel Boring Machine) 터널의 비선형 내진성능 평가 )

  • Byoung-Il Choi;Dong-Ha Lee;Jin-Woo Jung;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.1-9
    • /
    • 2024
  • Recently, the TBM tunnel construction method has been in the spotlight as tunnel excavation under urban areas such as the Metropolitan Rapid Transit (GTX) has been actively carried out. Although the construction cost of the TBM tunnel is high, it is relatively free from noise and vibration compared to the NATM tunnel method, so it is well known to be a suitable construction method for application to the lower part of urban areas. In particular, when the stratum passes through the shallow section, it can have a great impact on existing upper structures and obstacles, so accurate numerical analysis considering various variables is required when designing the TBM tunnel. Unlike other tunnel construction methods, TBM tunnels build linings by assembling factory-made segments. Unlike NATM tunnels, segment lining has connections between segments, so how to the connection status between segments is reflected can have a significant impact on securing the reliability of analysis results. Therefore, in this paper, a segment joint model(Janssen Model) was applied to the lining for seismic analysis of the TBM tunnel, and the tunnel's behavioral characteristics were analyzed after numerical analysis using nonlinear models according to urban railway seismic design standards.

Design of Simulation Prototype UI for Virtual Reality-based Air Blast and Vibration (가상현실 기반 발파소음 및 진동 시뮬레이션 UI 설계)

  • Lee, Dongyoun;Lee, Sang Gyu;Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.35-44
    • /
    • 2021
  • Recently, the new subway project called "Great Train Express" is in progress. During the tunnel excavation in the center of city, vibration and noise are generated, which make an uncomfortable effect on nearby residents. In order to prepare for this situation, the construction company generally establishes a noise and vibration management plan at the site from the construction planning stage through consultation with the residents of nearby areas and establishment of countermeasures for complaints raised. However, despite the establishment of a noise and vibration management plan, civil complaints have not been fundamentally resolved due to occurring noise and vibration during the construction in progress. In order to solve this problems, one of the best solution is to provide noise and vibration simulation technology with a high sense of reality and immersion for residents of nearby areas. Considering the ease and convenience of using the system, we intend to develop a UI(User Interface) necessary for the development of a simulation system that can directly experience the air blast and vibration based on virtual reality. The results of this study are expected to contribute to the development of virtual reality-based air blast and vibration simulations in the future.