• 제목/요약/키워드: 수농도

검색결과 18,726건 처리시간 0.057초

Acyclovir저항성 Herpes Simplex Virus의 복제, DNA합성 및 형질 발현에 미치는 Ganciclovir 및 Vidarabine의 병용효과에 관한 연구 (Combined Effect of Ganciclovir and Vidarabine on the Replication, DNA Synthesis, and Gene Expression of Acyclovir-resistant Herpes Simplex Virus)

  • 양영태;정동균;모리 마사가즈
    • 대한약리학회지
    • /
    • 제25권1호
    • /
    • pp.115-134
    • /
    • 1989
  • Ganciclovir(GCV)와 Vidarabine(ara-A)을 단독으로 또는 동시에 HSV-1에 작용시켰을때 HSV-1의 복제, DNA합성 및 단백질 합성에 미치는 영향을 관찰할 목적으로 본 연구를 시행하였다. 본 실험에서는 4가지의 다른 HSV-1(Wild type KOS, $VCV^r$, $IUdR^r$, 및 $PAA^r5$)를 사용하였다. Virus복제에 미치는 항 virus약의 효과는 Vero 세포단층 배양에서 Yield reduction assay에 의해서 관찰하였다. 항 virus약의 virus DNA 합성에 미치는 영향은 NaI 밀도 구배초원심침전후 $H^3-$표지 virus DNA의 방사능에 의해서 관찰하였다. Virus 단백질의 합성에 미치는 항 virus약의 효과는 $^{35}S$를 표지한 후 polyacrylamide 겔 전기영동법, 자가방사기록법 그러고 virus bands의 음영농도주사법을 이용, 관찰하여 다음과 같은 결과를 얻었다. 1. GCV는 wild trype HSV-1 KOS와 $PAA^r5$의 복제를 강력하게 억제하였으나 $ACV^r$$IUdR^r$는 GCV에 대해서 중등도의 저항을 보였다. ara-A는 실험대상의 모든 HSV-(KOS, $ACV^r$, $IUdR^r$$PAA^r5$)의 복제에 대해서 거의 비슷하게 억제효과를 보였다. GCV와 ara-A 동시첨가는 KOS와 $PAA^r5$의 복제에 대해서 상승적인 억제효과를 보였고 $ACV^r$$IUdR^r5$의 복제에 대해서는 상가작용이하의 억제 효과를 보였다. 2. GCV또는 ara-A는 HSV-1감염 Vero세포에서 virus DNA의 합성을 유의하게 억제하였다. GCV와 ara-A의 동시첨가는 KOS 또는 $PAA^r5$ 감염세포에서 virus DNA 합성을 GCV 또는 ara-A를 단독 첨가하였을때 보다 현저하게 억제하였다. $ACV^r$ 또는 $IUdR^r$ 감염세포에서는 이런 현상을 관찰할 수 없었다. 3. Wild type HSV-1 감염세포에서 virus-단백질의 합성은 GCV, ara-A의 단독 첨가 또는 GCV와 ara-A의 동시첨가에 의해서 변경되지 않았다. Wild type HSV-1 감염말기에 GCV 또는 ara-A 단독 혹은 동시첨가에 의해서 virus 단백질의 합성은 경미하나마 유의성있게 증가하였다. Wild type HSV-1과 $PAA^r5$에 의한 단백질의 합성은 GCV 또는 ara-A 단독 첨가에 의해서 유의성있게 억제되었다. GCV또는 ara-A의 동시첨가는 GCV또는 ara-A를 단독으로 첨가했을 경우보다 단백질의 합성을 더욱 억제하였다. 이상의 실험결과로 보아 GCV와 ara-A의 동시사용은 HSV-1 혹은 ACV저항 DNA polymerase변이주인 $PAA^r5$에 대해서 상승적인 억제작용을 나타냈으며 이 효과는 virus DNA 합성 억제에 의한 것으로 생각된다. ACV저항 thymidine kinase 변이주인 $ACV^r$$IUdR^r$에 대해서는 ara-A가 유효하였다. 항 virus 약물에 의한 virus 단백질합성의 변화는 virus DNA 합성에 대한 억제효과에 인한 것으로 사려된다.

  • PDF

밭 작물(作物)의 가리(加里) 생리(生理) (Potassium Physiology of Upland Crops)

  • 박훈
    • 한국토양비료학회지
    • /
    • 제10권3호
    • /
    • pp.103-134
    • /
    • 1977
  • 밭 작물에 대(對)한 칼리의 생리(生理) 및 생화학적(生化學的) 역할(役割)을 최근(最近) 연구결과(硏究結果)를 중심(中心)으로 검토(檢討)하였으며 우리나라 밭 작물(作物)의 가리영양(加里營養) 현황(現況)을 살펴봤다. 칼리이온의 물리화학적(物理化學的) 특성(特性)은 Na에 의(依)하여 완전(完全) 대체(代替) 불가능(不可能)함을 보이며 대부분(大部分)의 작물(作物)에서 Na의 K대체(代替)는 불가피(不可避)한 대체기능(代替機能)에 대(對)한 부분적(部分的) 대체(代替)에 불과(不過)한 것 같다. 칼리의 특이성(特異性)은 엽록체(葉綠體) thylacoid막(膜)과 같은 미세구조(微細構造)를 효율적(效率的) 구조(構造)로 유지(維持)하며 주(主)로 탄수화물(炭水化物)과 단백질(蛋白質) 대사(代謝)에 관계(關係)하는 제효소(諸酵素)들의 allosteric effector로, 효율적(效率的) conformation의 유지자(維持者)로 작용(作用)하는 것으로 보였다. 광인산화(光燐酸化) 반응(反應)과 산화적(酸化的) 인산반응(燐酸反應) 등(等) energy 대사(代謝)에 필수적(必須的) 존재(存在)로서 유기물(有機物)의 합성(合成)과 전류등(轉流等) 광범(廣範)한 energy 의존(依存) 생리작용(生理作用)에 관여(關與)하고 있다. 칼리는 삼투압(渗透壓) 및 교질(膠質)의 가수도(加水度)를 유지(維持)하여 수분흡수(水分吸收) 및 전류(轉流)의 동인(動因)으로 작용(作用)하여 생리작용(生理作用)의 최적환경(最適環境)을 만들며 수분효율(水分效率)을 높인다. 칼리는 무기양분(無機養分)의 흡수(吸收)와 체내분포(體內分布)에 영향(影響)을 주고 생산물의 품질향상(品質向上)에도 영향을 주며 생산품의 K함량자체(含量自體)가 인체(人體)에서의 K의 중요성(重要性)으로 품질평가(品質評價)의 기준(基準)이 될 것 같다. 칼리의 흡수(吸收)는 저온(低溫)에 의(依)해 크게 저해(沮害)받으며 내부(內部) 칼리 함량에 의(依)한 부(否)의 feedback기작(機作)이 있어서 칼리의 사치흡수는 재평가(再評價)되어야 할 것으로 보였다. 우리나라 토양(土壤)의 전가리(全加里)는 약(約) 3%이나 치환성(置換性)은 0.3me/100g으로 동해(凍害), 한해(寒害)와 불균일(不均一)한 강우(降雨)로 인(因)한 습해(濕害), 한해(旱害) 등(等)으로 모든 밭 작물(作物)에서 요구도(要求度)가 컸다. 대맥(大麥)은 결빙직전(結氷直前) 및 해빙(解氷) 직후(直後)의 K영양(營養)이 수량(收量)과 유의성(有意性) 상관(相關)을 보이며 곡실(穀實)로 많이 전류(轉流)되는 것이 좋았다. 대맥(大麥)의 가리이용률(加里利用率)은 27%, 대두(大豆)는 숙전(熟田)에서 58% 개간지(開墾地)에서 46%였다. 대두(大豆)는 야산(野山) 개발지(開發地)에서 특(特)히 가리(加里) 결핍증상(缺乏症狀)을 많이 보였으며 화아분화기(花芽分花期)에 엽(葉) 중(中) $K_2O$ 2% 이상(以上) K/(Ca+Mg) (함량비(含量比))비(比)는 1.0 이상(以上)이어야 할 것 같다. 고구마는 가리흡수력(加里吸收力)이 커서 후작(後作)의 K영양(營養)에 크게 영향(影響)을 주었다. 감자와 옥수수는 Ca와 Mg에 비(比)해 K가 특히 높았다. 가리결핍(加里缺乏) 고구마는 뿌리에서 K농도 차이가 가장 컸다. 당근, 가지, 배추, 고추, 무우, 도마도가 가리(加里) 함량(含量)이 많았으며 배추 수량(收量)은 가리(加里)와 정상관(正相關)이었다. 사료작물(飼料作物)의 가리(加里) 함량(含量)은 비교적(比較的) 높은 편이었으며 식물체(植物體) 중(中) N, P, Ca와 유의정상관(有意正相關)을 보였다. 과수원(果樹園)의 16~25%가 가리(加里) 부족(不足)으로 나타났으며 우량(優良) 사과밭과 배밭의 토양(土壤)과 엽(葉)은 가리(加里) 함량(含量)이 높았다. 뽕나무의 동해(凍害)에 의(依)한 가지 끝 고사방지(枯死防止)를 위(爲)한 엽(葉) 중(中) $K_2O/(CaO+MgO)$ 임계치(臨界値)는 0.95이었다. 밭 작물재배(作物栽培) 뒤의 토양(土壤) 중(中) 가리(加里)는 전작(前作)에 따라 증가(增加)되는 경우와 감소(減少)되는 경우가 있으며 가리(加里) 흡수(吸收)는 토양수분(土壤水分)에 존재(依存)하는 것 같다. 따라서 토양(土壤) 중(中)의 전가리(全加里)를 포함한 형태별(形態別) 가리(加里) 함량(含量)의 토질(土質), 기상(氣象), 작부체계(作付體系) 등(等) 제요인(諸要因)과 관련(關聯) 장기적(長期的)이고 정량적(定量的)인 조사(調査)가 필요(必要)하다. 가리(加里)의 추비(追肥), 심층시비(深層施肥) 또는 완용성(緩溶性) 비료(肥料)와 입상비료(粒狀肥料) 등(等)이 강우양상(降雨樣相)과 관련(關聯) 검토(檢討)됨으로써 K흡수(吸收) 및 효율(效率)을 증진(增進)시킬 수 있을 것 같다. 가리영양(加里營養)을 포함하여 밭 작물(作物)의 영양해석(營養解析)에는 다요인분석(多要因分析)에 의(依)한 합리적(合理的)이고 실용적(實用的)인 영양지표(營養指標)를 찾는데 경주(傾注)해야 할 것 같다.

  • PDF

근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究) (Studies on Nutrio-physiological Response of Rice Plant to Root Environment)

  • 박준규;김영섭;오왕근;박훈;시택문웅
    • 한국토양비료학회지
    • /
    • 제2권1호
    • /
    • pp.53-68
    • /
    • 1969
  • 생산력이 서로 다른 두 토양(土壤)에 유기물(有機物)을 첨가(添加)하여 근부(根部) 환경(環境)의 변화(變化)와 수도품종별(水稻品種別) 근(根)의 근부(根部) 환경(環境)에 대(對)한 반응(反應)을 육안(肉眼) 관찰(觀察)하고 양분흡수(養分吸收)를 조사(調査)하여 다음과 같은 결과(結果)를 얻었다. 1) 고위답토양(高位畓土壤)은 유기물(有機物)의 분해(分解)가 완만(緩慢)하며 분해평형점(分解平衡點)에서의 유기물(有機物) 함량(含量)이 높고 저위답토양(低位畓土壤)은 유기물(有機物)의 분해(分解)가 급속(急速)하며 분해평형점(分解平衡點)에 함량(含量)이 낮다. 2) 저위답토양(低位畓土壤)은 근(根)의 발육(發育)이 조해(阻害)되며 유기물(有機物) 첨가(添加)에 의(依)하여 더욱 조해(阻害)된다. 유기물(有機物)의 분해(分解)로 생기는 gas가 근(根) 주변(周邊)에 피막(被膜)을 형성(形成)하는데 기인(起因)하는것 같으며 이 결과(結果)로 T/R 값이 심히 떨어진다. 3) 품종간(品種間) 근부(根部) 환경(環境)에 반응력(反應力)이 현저하여 수원(水原) 82호(號)는 농림(農林) 25호(號) 보다 고위답(高位畓) 토양(土壤)에서는 흡수력(吸收力)이 강(强)하고 저위답토양(低位畓土壤)에서는 흡수력(吸收力)이 떨어진다. 4) 유기물(有機物) 첨가(添加)로 가리흡수(加里吸收)가 조해(阻害)되고 저위답토양(低位畓土壤)에서는 인산흡수(燐酸吸收)가 가장 조해(阻害)되는데 저위답토양(低位畓土壤)에 유기물(有機物)을 첨가(添加)하여 이 두 인자(因子)가 공역(共役)할 경우 양분흡수조해(養分吸收阻害)는 상승적(相乘的)으로 야기(惹起)된다. 5) 근(根)의 활력(活力)과 근수(根數), 지상부(地上部) 생육량(生育量) 및 근부생육량(根部生育量)과의 상관(相關)은 각각(各各) r=0.839, r=0.834, r=0.948로 모두 1%에서 유의성(有意性)이 있고 지상부(地上部)와 근부(根部)의 N.P.K. 흡수량(吸收量)과도 각각(各各), r=0.751, r=0.670, r=0.769, r=0.729, r=0.742, r=0.815로 5% 수준(水準)에서 유의성(有意性)이 있으며 근부(根部)의 생육량(生育量) 및 가리(加里)의 흡수량(吸收量)과의 상관계수(相關係數)가 가장 크다. 6) 근부환경(根部環境)이 나쁜곳에서는 좋은 곳에서보다 수도지상부(水稻地上部)의 질소농도(窒素濃度)는 낮고 근부(根部)는 훨씬 높아서 ammonia 과잉(過剩)의 해독(害毒)이 예상되며 인산(燐酸)과 가리(加里)는 양부위(兩部位)에서 모두 심히 낮으며 특히 간(稈)과 엽초(葉稍)에서 더욱 낮았다. 7) 근부환경(根部環境)이 나쁜 곳에서는 좋은곳에서보다 지상부(地上部)의 당(糖)과 전분(澱粉) 및 전탄수화물(全炭水化物) 함량(含量)이 높은데 반(反)하여 근부(根部)에서는 낮은데 환원당(還元糖)에서 더욱 심하여 근부(根部)에서는 당(糖)의 이상소모(異常消耗)가 예상되고 지상부(地上部)에서는 이에 대비하여 당(糖) 대사(代謝)가 해당방향(解糖方向)으로 주력(注力)함이 예상된다. 8) 근부환경(根部環境)이 나쁜곳에서는 근부(根部)에서 지상부(地上部)로 양분(養分)의 전류(轉流)가 극히 나빴다. 9) 근부환경(根部環境)이 나쁜곳에서는 황산(黃酸)의 함유율(含有率)이 높은데 엽신(葉身)에서 특히 높아 황산(黃酸) Ion에 의(依)한 ATP 생성(生成) 조해(阻害)가 예상되고 $P_2O_5/S$ 값은 고위답(高位畓) 유기물무시용구(有機物無施用區)의 1/5에 불과(不過)하여 P-S 비(比)가 관련된것 같다. 10) 근부환경(根部環境)이 나쁜곳에서는 지상부(地上部) 철(鐵)의 함량(含量)에는 차이(差異)가 없으나 Mn 함량(含量)은 상당히 적은 편이어서 $Fe/P_2O_5$ 값이 큰데 간(稈)과 엽초(葉稍)에서 7배(倍)나 되어 철인산(鐵燐酸) 침전에 의(依)한 통도(通導)의 기계적(機械的) 장해(障害)가 예상된다. 11) 토양중(土壤中) 조해성(阻害性) 인자(因子)는 유기물(有機物) 분해속도(分解速度)가 빠른 경우 악화(惡化)되어 근부기능기(根部機能基)를 조해(阻害)하여 양분(養分)을 조지(阻止)하고 체내(體內) Ion 평형(平衡)(N. P. K. S. Fe)을 교란(攪亂) 이상대사(異常代謝)(해당작용(解糖作用) A. T. P 생성약화(生成弱化))를 일으켜 전류(轉流)가 방해(防害)되고 따라서 각부위(各部位)의 생육(生育)의 불균형(不均衡)을 초래(招來)하는 연발생(連發生) 조해작용(阻害作用)이 순환가속(順換加速)하는 것으로 추정(推定)된다. 12) 고위답(高位畓)에서 질소(窒素)의 시용량(施用量)에 따른 근분포(根分布)를 조사(調査)한 결과(結果) 저위답(低位畓)은 표토부분(表土部分)에 분포(分布)하나 고위답(高位畓)에서는 심토(心土)에 분포비율(分布比率)이 많다. 질소(窒素) 무시용(無施用)은 지하(地下) 0~7cm 부위(部位)에 분포(分布) 비율(比率)이 크고 질소(窒素)를 시용(施用)하면 7~14cm 부위(部位)에 근분포(根分布) 비율(比率)이 많다. 전(全) 근중(根重)은 저위답(低位畓)에 비(比)하여 고위답(高位畓)에 많고 질소(窒素) 무시용(無施用)에 비(比)해서 질소(窒素) 10a 12kg 시용(施用)에서 많았다.

  • PDF

배추김치의 절임공정 조건에 따른 위해미생물 변화 (Change of Harmful Micnoorganisms in Pickling Process of Salted Cabbage According to Salting and Washing Conditions)

  • 김진희;이유근;양지영
    • 한국식품위생안전성학회지
    • /
    • 제26권4호
    • /
    • pp.417-423
    • /
    • 2011
  • 김치제조업체 4곳의 배추와 소금에 대한 일반세균을 분석결과 $1.4{\times}10^5$, $6.4{\times}10^5$, $1.7{\times}10^7$, $3.6{\times}10^7$ CFU/g 와 $2.7{\times}10^3$ CFU/g로 검출 되었으며, 대장균군은 배추에서 $2.4{\times}10^4$ CFU/g검출되었고, E. coli은 검출되지 않았다. S. aureus은 배추에서 $9.9{\times}10^2$, $8.0{\times}10^1$, $3.0{\times}10^3$ CFU/g이 검출되었고, B. cereus도 배추에서$4.1{\times}10^3$, $1.0{\times}10^1$ CFU/g 이 검출 되었다. C. jejuni, V. paraheamolyticus는 배추에서 $2.4{\times}10^6$, $1.0{\times}10^4$ CFU/g로 검출되었고, Y. enterocolitica는 소금에서 $1.0{\times}10^3$ CFU/g 으로 검출되었으며, L. monocytogenes는 배추에서 $1.5{\times}10^1$, $1.1{\times}10^2$, $4.5{\times}10^1$ CFU/g 로 검출되었다. 제조공정별 일반생균수는 절임용 소금물의 경우 $1.4{\times}10^1{\sim}4.4{\times}10^5$ CFU/g이 검출되었고, 탈수 절임배추는 $1.5{\times}10^4{\sim}1.2{\times}10^8$ CFU/g이 검출되었으며, 세절 절임배추의 경우 $9.4{\times}10^4{\sim}1.3{\times}10^8$ CFU/g이 검출되었다. E. coli은 업체에 따라 시료에 대해 검출되는 양상이 달랐다. S. aureus와 B. cereus은 일부 업체의 절임용 소금물과 탈수 절임배추에서 양성으로 검출되었다. V parahaemolyticus는 절임 소금물에서 검출되었다. Y. enterocolitica는 절임용 소금물 $9.5{\times}10^2{\sim}1.8{\times}10^3$ CFU/g, 탈수 절임배추 $1.7{\times}10^1{\sim}2.7{\times}10^2$ CFU/g, 세절 절임배추 $1.2{\times}10^2{\sim}1.3{\times}10^8$ CFU/g이 검출되었다. L. monocytogenes는 절임용 소금물 $8.0{\times}10^2{\sim}1.7{\times}10^4$, 탈수 절임배추 $2.8{\times}10^2{\sim}1.2{\times}10^4$ CFU/g, 세절 절임배추는 검출되지 않았다. 절임공정 조건으로 염수농도 8%, 10%, 12%, 15%와 배 추를 5~20hr 동안 절인배추의 위해 미생물을 측정한 결과는 E. coli은 $3.5{\times}10^5{\sim}1.7{\times}10^6$, $3.4{\times}10^5{\sim}2.5{\times}10^6$, $5.4{\times}10^5{\sim}2.3{\times}10^6$, $4.0{\times}10^5{\sim}2.3{\times}10^6$ CFU/g로 검출되었고, S. aureus은 $1.9{\times}10^4{\sim}4.1{\times}10^4$, $4.1{\times}10^3{\sim}2.8{\times}10^4$, $1.5{\times}10^3{\sim}7.8{\times}10^3$, $2.2{\times}10^4{\sim}6.6{\times}10^4$ CFU/g으로 검출되었다. S. typhimurium은 염수의 5 hr 절인 배추에서만 $2.5{\times}10^5{\sim}3.8{\times}10^6$ CFU/g이 검출되어 10%염수에 15 hr 절인배추가 미생 물 오염 변화가 가장 적었다. 10%염수에 15 hr 절인배추를 세척방법을 달리한 물 2, 3회 세척, 염소 3회 세척, acetic acid 3회 세척 시 E. coli은 물 3회 세척, 염소 3회 세척, 물 2회 세척 순으로 검출 되었으며 acetic acid 3회 세척에서 는 검출되지 않았다. S. aureus은 물 2회 세척에서 $3.0{\times}10^5$, 물 3회 세척과 염소 3회 세척은 $3.6{\times}10^5$ CFU/g으로 검출 되었고, acetic acid 3회 세척은 $5.6{\times}10^3$, $5.6{\times}10^3$ CFU/g로 물보다는 염소와 acetic acid에서 비교적 작게 검출되었다. S. typhimurium은 acetic acid 3회 세척에서 $3.0{\times}10^1$ CFU/g 로 가장 낮게 검출되었다.

느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究) (Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus))

  • 홍재식
    • Applied Biological Chemistry
    • /
    • 제21권3호
    • /
    • pp.150-184
    • /
    • 1978
  • 합성배지(合成培地)에서 느타리 버섯균(菌)의 균사생육(菌絲生育)과 자실체형성(子實體形成)에 대한 영양적(營養的) 특성(特性)과 생리화학적(生理化學的) 제성질(諸性質)을 구명(究明)하고 볏짚과 톱밥 양(兩) 배지(培地)에서 느타리 버섯의 대량(大量) 생산(生産)을 위한 배양조건(培養條件)을 밝히고, 느타리 버섯 재배기간(栽培期間) 중 배지(培地)와 버섯중의 각종(各種) 성분(成分)의 추이(推移)를 알고자 실험을 수행하여 다음과 같은 결과를 얻었다. 1. 탄소원(炭素源) 중 mannitol과 서은 균사생육(菌絲生育)과 자실체(子實體) 형성(形成)이 빠르고 자실체(子實體)의 수량(收量)이 많았으나 lactose와 rhamnose는 균사(菌絲) 조차도 생육하지 못하였다. 또한 구연산, 호박산, ethyl alcohol 및 glycerol에서는 자실체(子實體) 형성(形成)이 매우 빈약(貧弱)하였고, 식초산, 개미산, 푸마르산, n-butyl alcohol, iso-butyl alcohol 및 n-propyl alcohol은 균사생육(菌絲生育)을 저해(阻害)하였다. 2. 질소원(窒素源)중 peptone은 균사생육(菌絲生育)과 자실체(子實體) 형성(形成)이 빠르고 자실체(子實體)의 수량(收量)이 많았으나 DL-alanine, asparagine, L-aspartic acid, glycine및 serine은 자실체형성(子實體形成)이 매우 빈약(貧弱)하였으며 아질산태질소(亞窒酸態窒素), L-tryptophan 및 L-tyrosine은 균(菌)의 생육을 저해(沮害)하였다. 또한 peptone에 무기태질소(無機態窒素)와 아미노산(酸)을 혼용(混用)한 결과 $(NH_4)_2SO_4$, $NH_4$-tartarate, DL-alanine및 L-leucine에서는 자실체(子實體)의 수량(收量)이 약 10% 증가되었고, L-aspartic acid는 약 15%. L-arginine은 약20%, L-glutamic acid와 L-lysine은 약 25%증가 되었다. 3. C/N율(率) 15.23에서 자실체(子實體) 형성(形成)은 빠르나 자실체(子實體)의 수량(收量)은 감소(減少)되었으며, C/N율(率) 11.42에서는 자실체형성(子實體形成)은 늦으나 자실체(子實體)의 수량(收量)은 증가되는 경향이 있었다. 또한 동일 C/N율(率)에서도 mannitol과 peptone의 농도(濃度)가 높은 편이 수량(收量)이 증가되었다. 그러므로 자실체(子實體)의 수량(收量)과 자실체형성(子實體形成) 소요일(所要日)의 관점(觀點)에서 보면 C/N율(率) 30.46이 어느정도 적당(適當)한 것 같다. 4. Thiamine $50{\mu}g%,\;KH_2PO_4$ 0.2%, $MgSO_4{\cdot}7H_2O$$0.02{\sim}0.03%$일때 균사(菌絲)와 자실체(子實體) 생육(生育)이 우수(優秀)하였으며 미량원소(微量元素)로서는 $FeSO_4{\cdot}7H_2O$,\;ZnSO_4{\cdot}7H_2O$$MnSO_4{\cdot}5H_2O$가 공존(共存)하면 생육촉진(生育促進)의 상승효과(相乘效果)가 인정되었으나 3이원소(元素)중 Mn이 결핍(缺乏)하면 균사(菌絲)와 자실체(子實體)의 생육(生育)이 다소 저하되었다. 이들 염류(鹽類)의 최적농도(最適濃度)는 각각 0.02mg%이었다. 5. Cytosine $0.2{\sim}1mg%$와 indole acetic acid 0.01mg%에서 균사량(菌絲量)은 증가되었으나 자실체(子實體)의 수량(收量)에는 효과 없었으며 그밖의 purine염기(鹽基), pyrimidine염기(鹽基) 및 식물(植物) hormone은 영향이 없었다. 6. 광조사(光照射영)에 의해서 균사생육(菌絲生育)은 저해(沮害)되었으며 영양생장(營養生長)의 후기에 광(光)을 조사(照射)하면 원기형성(原基形成)이 유도(誘導)되었다. 광(光)의 최적조도(最適照度)는 $100{\sim}500lux$, 조사시간(照射時間)은 매일 $6{\sim}12$시간이었고, 이 이상(以上)의 조도(照度)에서는 오히려 저해(沮害)되었으며, 암소(暗所)에서는 원기(原基)가 형성(形成)되지 않고 영양생장(營養生長)만 계속되었다. 7. 균사생육(菌絲生育)과 자실체(子實體) 형성(形成)의 최적온도(最適溫度)는 각각 $25^{\circ}C,\;10{\sim}15^{\circ}C$이었고 최적(最適)의 pH범위(範圍)는 $5.0{\sim}6.5$이었으며 균사(菌絲)는 $7{s\im}10$일간 배양(培養)했을 때가 자실체(子實體) 형성(形成)이 제일 우수(優秀)하였다. 또한 배지량(培地量)이 적을수록 자실체(子實體) 형성(形成)은 빠르나 자실체(子實體)의 수량(收量)은 감소(減少)되었고 배지량(培地量)이 많을수록 자실체(子實體) 형성(形成)은 늦은반면에 그 수량(收量)은 증가 되었으며, 원기형성(原基形成)은 $CO_2$에 의하여 저해(沮害)되었다. 8. 볏짚과 톱밥 병 배지(培地)에서 균사생육(菌絲生育)의 최적(最適) 수분량(水分量)은 70%이상 이었으며 미강(米糠) 10%를 배지(培地)에 첨가(添加)했을 때는 균사생육(菌絲生育)과 자실체형성(子實體形成)이 우수(優秀)하였다. 그리고 양배지(兩培地)에 $CaCo_3$를 단독(單獨)으로 첨가했을 때는 유효(有?)하였으나 미강(米糠)과 함께 첨가했을때는 효과(?果)를 볼 수 없었다. 9. 재배(栽培) 실험(實驗)에서 느타리 버섯의 전체(全體) 수량(收量)은 볏짚배지(培地)에서 $14.99kg/m^2$, 톱밥배지(培地)에서 $6.52kg/m^2$이었고 양배지(兩培地) 모두 90%이상이 1,2주기(週期)에서 얻어졌으며 볏짚배지(培地)(dry matter $20.96kg/m^2$)의 전수율(全收率)을 톱밥배지(培地)(dry matter $20.83kg/m^2$)의 약 2.3배(倍)이었다. 10. 재배기간(栽培期間)중 양(兩) 배지(培地)의 일반 성분을 고형물(固形物) 기준(基準)으로 볼때 회분(灰分)의 변화는 적었으나 유기물(有機物)은 감소(減少)되었으며, 수분(水分)은 종균접종시(種菌接種時) 약 79%이던것이 균사번식기간(菌絲繁殖期間)중에 다소 감소(減少)되었고 그 이후부터는 큰 변화가 없었다. 11, 종균접종시(種菌接種時) 부터 4주기(週期) 수확(收穫) 후까지 배지(培地) 성분(成分)의 소실(消失)을 보면 볏짚배지(培地)는 고형물(固形物) 약 19.7%, 유기물(有機物) 약 19.3%, 질소(窒素) 약 40%가 소실(消失)되었으며, 톱밥 배지(培地)에서는 고형물(固形物) 약 7.5%, 유기물(有機物) 약 7.6%, 질소(窒素) 약 20%가 소실(消失)되었다. 버섯 1kg을 생산(生産)하기 위하여 볏짚 배지(培地)에서는 유기물(有機物) 약 232g, 질소(窒素) 약 7.0g이 소실(消失)되었고, 톱밥 배지(培地)에서는 유기물(有機物) 약 235g, 질소(窒素) 약 6.8g이 소실(消失)되었으며, 버섯 1kg당(當) 함유된 유기물(有機物)은 각각 82.4g, 82.3g, 질소(窒素)는 각각 5.6g, 5.4g이었다. 12. 양배지(兩培地)의 전질소(全窒素)는 점차적으로 감소(減少)되었고 불용성질소(不溶性窒素)의 절대감소량(絶對減少量)은 수용성질소(水溶性窒素)보다 컸으며 아미노태(態) 질소(窒素)는 3주기(週期)까지는 계속 증가 되었으나 그 이후부터는 감소(減少)되었다. 13. 볏짚 배지(培地)에서는 재배기간(栽培其間)에 소실(消失)된 전(全) pentosan의 28%, ${\alpha}$-cellulose는 13.8%가 균사생육(菌絲生育)중에 소실(消失)되었고 톱밥배지(培地)에서는 전(全) pentosan의 24.1%, ${\alpha}$-cellulose는 11.9%가 소실(消失)되었으며 lignin은 양(兩) 배지(培地)의 2주기(週期) 수확(收穫)부터 다소 감소(減少)되었다. 환원당(還元糖), trehalose 및 mannitol은 계속 증가의 추세를 보였으며 C/N율(率)은 볏짚 배지(培地)에서 종균(種菌) 접종시(接種時) 33.2이었던 것이 폐상시(廢床時)에는 30.3이었고, 톱밥 배지(培地)는 61.3이었던 것이 60.0 이었다. 14. 양(兩) 배지(培地)에서 P, K, Mn, Zn은 감소(減少)되었고, Mg, Ca, Cu는 불규칙하게 변화되었으며, Fe는 증가되는 경향이었다. 15. 재배기간(栽培期間)중 각종효소(各種酵素)의 활성(活性)은 톱밥배지(培地)보다 볏짚배지(培地)가 월등히 높았다. 즉 CMC 당화활성(糖化活性)과 CMC액화활성(液化活性)은 균사번식(菌絲繁殖)후부터 2주기수확(週期收穫)까지는 양배지(兩培地)에서 점차적으로 증가 되었으나 그 이후부터는 감소(減少)되었다. xylanase활성(活性)은 1주기(週期)보다 2주기(週期)에서 급격히 상승되었고 3주기(週期)가 되면서 볏짚 배지(培地)에서는 신속히 감소(減少)되었으나 톱밥 배지(培地)에서는 이와같은 감소(減少)를 볼 수 없었다. protease 활성(活性)은 균사번식(菌絲繁殖)후 최고의 활성도(活性度)를 보였다가 점차로 감소(減少)하였다. 또한 볏짚 배지(培地)의 pH는 종균접종시(種菌接種時) 6.3이던 것이 4주기(週期)후는 5.0이었고 톱밥배지(培地)의 pH는 5.7에서 4.9로 떨어졌다. 16. 볏짚 배지(培地)에서 생육한 버섯은 섬유소(纖維素)를 제외한 모든 성분량(成分量)이 톱밥배지(培地)에서 생육한 버섯보다 높은 경향이있었으며 양배지(兩培地)에서 버섯의 각주기별(各週期別) 성분(成分) 변화는 $1{\sim}3$주기(週期)까지는 거의 비슷하였으나 4주기(週期)에서는 다소 감소(減少)의 추세를 보였다.

  • PDF

요소엽면살포(尿素葉面撒布)에 따른 수도(水稻)의 질소영양(窒素營養)에 관(關)한 연구(硏究) (Studies on the Foliar Application of Urea as Nitrogen Source of Rice Plant Nutrition)

  • 조성진
    • Applied Biological Chemistry
    • /
    • 제9권
    • /
    • pp.125-147
    • /
    • 1968
  • I. 수도(水稻)에 대(對)한 질소(窒素)의 합리적시용법(合理的施用法)을 확립(確立)하기 위(爲)한 일환(一環)의 연구(硏究)로서 못자리의 질소시용량(窒素施用量)과 못자리 말기(末期)에 있어서의 요소엽면살포(尿素葉面撒布)가 묘(苗)의 소질(素質) 특(特)히 질소(窒素)의 흡수(吸收) 및 발근력(發根力)에 미치는 영향을 알고자 시험(試驗)한바 그 결과(結果)는 다음과 같다. 1. 못자리에 $3.3\;m^2$ 당(當) 요소(尿素) 45g 토양시비(土壤施肥)한 것은 질소함량(窒素含量)이 1.835%인데 65g 시비구(施肥區)는 2.191%로서 유의차(有意差)를 인정(認定)하였다. 2. 못자리 말기(末期)의 요소엽면살포구(尿素葉面撒布區))$(T_{1},\;T_2)$는 무처리구(無處理區)$(T_0)$에 비(比해)서 모두 질소함량(窒素含量)이 증대(增大)되고 있으며 처리간(處理間)에 유의차(有意差)를 인정(認定)하였다. 즉 무처리구(無處理區)$(T_0)$는 질소함량(窒素含量)이 1.958%인데 0.5% 요소액살포구(尿素液撒布區)$(T_1)$는 2.020%이며 1.0% 요소액살포구(尿素液撒布區)$(T_2)$는 2.063%였다. 3. 요소농도(尿素濃度)가 낮은 $T_1$ 구(區)에 대해서 10% 요소액(尿素液)과 동량(同量) 요소(尿素)를 토양(土壤)에 시비(施肥)한 구(區)$(T_2)$는 질소(窒素)의 함량(含量)이 2.011%로서 오히려 낮으며 엽면살포(葉面撒布)가 모의 질소함량(窒素含量)을 증대(增大)시켰으며 이앙후(移秧後)의 착근(着根)과 초기(初期) 생육(生育)을 촉진(促進)시켰다. 4. 못자리에 $3.3\;m^2$ 당(當) 요소(尿素) 45g 토양시비구(土壤施肥區)$(N_1)$는 탄소함량(炭素含量)이 22.57%인데 65g 시비구(施肥區)$(N_2)$는 23.10%로서 유의차(有意差)가 인정(認定)되며 질소사용량(窒素使用量)이 더 많을 경우에 탄소함량(炭素含量)도 높았다. 5. 요소엽면살포(尿素葉面撒布) 및 토양시비구(土壤施肥區)의 탄소함량(炭素含量)은 $T_1$ 구(區)22.86% $T_2$ 구(區) 23.10% $T'_2$ 구(區) 22.95%로서 $T_0$구(區) 22.43%에 비(比)하여 높았으며 질소흡수(窒素吸收)가 커지는데 비례(比例)해서 증대(增大)되고 있다. 6. C/N율(率)에 있어서는 토양시비구간(土壤施肥區間)과 못자리 말기(末期)의 요소엽면살포구간(尿素葉面撒布區間) 모두 유의차(有意差)가 인정(認定)되며 질소시용량(窒素施用量)이 많은 경우에 C/N율(率)이 낮았다. 7. 발근수(發根數)는 $N_1$ 구(區)보다 $N_2$ 구(區)가 조사기간중(調査期間中)$1{\sim}2$개(個)가 많았으며 못자리말기(末期)에 질소시용(窒素施用)도 역시 발근수(發根數)를 증대(增大)시켰다. 8. 근장(根長)에 있어서도 처리간변이(處理間變異)가 발근수(發根數) 경우와 동일(同一)한 경향(傾向)이였다. 9. 모의 질소(窒素) 및 소소함량(素素含量)이 높고 C/N율(率)이 낮은 것이 발근수(發根數) 및 근장(根長)을 증대(增大)시켰다. II. 수전기에 있어서의 전엽(剪葉)의 정도(程度)와 요소엽면살포(尿素葉面撒布)가 수도(水稻)의 등숙(登熟) 및 수량(數量)에 미치는 영향을 알고자 하였으며 식물체(植物體)의 질소(窒素) 및 탄소함량(炭素含量)을 분석(分析)하여 이들과 수량(數量)의 관계(關係)를 살펴 보았던바 결과(結果)는 다음과 같다. 1. 1수평균중(穗平均重)은 전엽(剪葉)의 정도(程度)가 클수록 저하(低下)하였으며 요소(尿素)의 엽면살포(葉面撒布)는1수평균중(穗平均重)을 증가(增加)하는데 도움이 되었고 1회살포구(回撒布區)(B)보다 2회살포구(回撒布區) (A)가 더 유효(有效)하였다. 2. 벼의 등숙율(登熟率)은 전엽처리간(剪葉處理間)에 고도(高度)의 유의차(有意差)를 인정(認定)하였으며 전엽(剪葉)의 정도(程度)가 클 수록 등숙율(登熟率)이 낮았다. 한편 질소(窒素)의 엽면살포(葉面撒布)가 등숙율(登熟率)에 미치는 영향(影響)은 보통(普通)의 유의성(有意性)을 보일 정도로 유효(有效)하였다. 전엽(剪葉)의 정도(程度)와 등숙율(登熟率)과의 상관관계(相關關係)를 계산(計算)하여 본즉 상관계수(相關係數)(r)는 0.961로서 고도의 상관(相關)을 보이고 존치엽수(存置葉數)가 많을수록 등숙율(登熟率)은 높았다. 3. 정조천립중(正租千粒重)에 미치는 전엽(剪葉)의 영향(影響)은 무전엽구(無剪葉區) (f)의 정조천립중(正租千粒重) 28.05g을 100으로 하였을 때 1매존치구(枚存置區) (a) 84.88, 2 매존치구(枚存置區) (b) 31.51, 3 매존치구(枚存置區) (c) 95.08, 4 매존치구(枚存置區) (d) 97.29, 5 매존치구(枚存置區) (e) 100.40dml 수치(數値)를 보였으며 이들간의 상관계수(相關係數)(r)는 0.925로서 고도(高度)의 상관(相關)을 보여 존치엽수(存置葉數)가 많을수록 높았다. 한편 요소엽면살포(尿素葉面撒布)가 정조천립중(正租千粒重)에 미치는 효과는 무살포구(無撒布區) (c) 정조천립중(正租千粒重) 25.89g을 100으로 하면 B 구(區) 103.20이고, A 구(區)는 105.56의 지수(指數)를 보였으며 처리간(處理間)에 고도(高度)의 유의성(有意性)을 보이고 있다. 4. 정조중(正租重)에 미치는 전엽(剪葉)의 영향(影響)은 전엽(剪葉)의 정도(程度)가 클 수록 정조중(正租重)은 저하(低下)하였으며, f 구(區)의 정조중(正租重) 172.7g을 100으로 하였을 때 a 구(區) 64.10, b 구(區) 71.63, c 구(區) 78.23, d 구(區) 82.22, e 구(區) 99.89의 지수(指數)를 보였고 전엽(剪葉)의 정도(程度)와 정조중(正租重)과의 상관계수(相關係數)(r)는 0.971로서 고도(高度)의 상관(相關)을 보이고 있다. 한편 요소(尿素)의 엽면살포(葉面撒布)의 효과(效果)는 통계적(統計的)으로 보아 유의차(有意差)가 인정(認定)되며 c 구(區) 133.0g을 100으로 하였을때 B 구(區) 104.88이고 A 구(區)는 117.22의 지수를 보였다. 5. 현미수량은 f 구(區) 145.94g을 100으로 하였을때 a 구(區) 33.41 b 구(區) 42.29, c 구(區) 64.85 d 구(區) 70.20 그리고 e 구(區)는 92.25의 지수(指數)를 보여 처리간(處理間)에 고도(高度)의 유의차(有意差)를 보였으며 제현율(製玄率)은 f 구(區) 84.50% a 구(區) 44.04%, b 구(區) 49.89%, c 구(區) 70.05% d 구(區) 72.15% e 구(區)는 77.87%였다. 한편 요소(尿素)의 엽면살포구(葉面撒布區)의 현미수량(玄米數量)은 C 구(區)의 수량 88.47g을 100으로 하였을 때 B 구(區) 109.85, A 구(區)는 124.98의 지수(指數)를 보였다. 6. 제현율(製玄率)은 C 구(區) 66.51%이고, B 구(區) 69.77% A 구(區) 70.93%을 보였다. 7. 질소함량(窒素含量)은 요소엽면살포(尿素葉面撒布)에 의하여 이삭이나 잎에 있어서 모두 증대(增大)하여 무살포구(無撒布區) (C) 1.341% 및 1.479%인데 요소엽면살포구(尿素葉面撒布區) (B)는 1.369% 및 1.491%의 분석치(分析値)를 보였다. 8. 탄소함량(炭素含量)은 질소(窒素)의 경우와 같이 요소엽면살포(尿素葉面撒布)에 의하여 모두 증대(增大) 되었으며, 무살포구(無撒布區) (C)의 이삭 37.000% 및 43.915%의 분석치(分析値)를 보였다. 9. C/N율(率)은 이삭에 있어서는 처리간(處理間)에 차이(差異)가 없었고 잎에서만 요소엽면살포구(尿素葉面撒布區)가 약간 높았다. 10. 현미수량(玄米數量)과 질소(窒素), 탄소함량(炭素含量) 및 C/N율간(率間)에는 고도(高度)의 상관(相關)을 보였으며 질소(窒素) 및 탄소함량(炭素含量) 그리고 C/N율(率)이 높을 수록 수량(數量)을 증대(增大)하였다. III. 수비(穗肥)로써 요소엽면살포(尿素葉面撒布)의 효과(效果) 및 그 시기(時期)를 알고자 시험(試驗)한바 그 결과(結果)는 다음과 같다. 1. 간장(稈長), 수장(穗長 ) 및 수수(穗數에)는 차이(差異)를 인정(認定)하지 못하였다. 2. 1수평균(穗平均) 영화수(潁花數)는 수비시용시기간(穗肥施用時期間)에 보통(普通)의 유의성(有意性)을 보였고 수비시용시기(穗肥施用時期)가 빠를 수록 증대(增大)하는 경향(傾向)을 보였으며 수비시용방법간(穗肥施用方法間)에서는 유의성(有意性) 차이(差異)가 인정(認定)되지 않았으나 수치적(數値的)으로는 요소(尿素) 2.0%액(液) 엽면살포구(葉面撒布區)가 가장 많아서 65.9 입(粒), 요소(尿素) 10%액(液) 토양시용구(土壤施用區) 65.6 입(粒), 요소(尿素) 2.0%액(液) 토양시용구(土壤施用區) 64.4 입(粒), 대조구(對照區) 63.9 입(粒)의 순위로 적었다. 3. 등숙율(登熟率)은 수비시용기간(穗肥施用期間)에는 보통(普通)의 유의차(有意差)를 보였고 수비시용기(穗肥施用期)가 출수기(出穗期) 7일(日)까지에서는 늦을수록 약간 높아지는 경향(傾向)을 보였으며 수비시용방법(穗肥施用方法)에 있어서는 요소(尿素) 2.0%액(液) 엽면살포구(葉面撒布區)와 10%액(液) 토양시용구(土壤施用區)가 현저(顯著)히 높아서 89.8% 및 89.4%를 보였고 요소(尿素) 2.0%액(液) 토양시용구(土壤施用區)는 87.8% 및 87.5%를 보여 이들 처리간(處理間)에 고도(高度)의 유의성(有意性)을 보였다. 4. 정조천립중(正租千粒重)은 수비시용시기간(穗肥施用時期間)에 고도(高度)의 유의차(有意差)가 인정(認定)되며 등숙율(登熟率)의 경우와 같이 출수전(出穗前) 7일(日)까지에서는 수비(穗肥)가 늦을 수록 천립중(千粒重)은 증대(增大)하는 경향(傾向)을 보였으며 수비시용방법간(穗肥施用方法間)에 있어서도 고도(高度)의 유의차(有意差)가 인정(認定)되었고 요소(尿素) 2.0%액(液) 토양시용구(土壤施用區)는 23.18g로서 가장 높았다. 5. $3.3\;m^2$당 정조수량(正租收量)은 수비시용시기간(穗肥施用時期間)에는 유의차(有意差)가 인정(認定)되지 않았으며 수비시용방법(穗肥施用方法)에 따르는 차이(差異)는 고도(高度)의 유의차(有意差)를 보여 요소(尿素) 2.0%액(液) 엽면살포구(葉面撒布區) 및 요소(尿素) 10%액(液) 토양시용구(土壤施用區)가 현저(顯著)히 높아 1.486kg 및 1.491kg을 냈고 요소(尿素) 2.0%액(液) 토양시용구(土壤施用區) 및 대조구(對照區)는 1.381kg 및 1.486kg이었다. 6. 제현율(製玄率)은 수비시용시기간(穗肥施用時期間)에는 유의차(有意差)를 인정(認定)하였으며 수비시기(穗肥時期)가 출수전(出穗前) 14일(日)이 되던 때가 가장 높았으며 수비방법(穗肥方法)에 따르는 제현율(製玄率)은 처리간(處理間)에 고도(高度)의 유의차(有意差)를 인정(認定)할 수 있었고 요소(尿素) 2.0%액(液) 엽면살포구(葉面撒布區) 및 10%액 토양시용구(土壤施用區)는 84.72% 및 84.06%로서 현저(顯著)히 높고 요소(尿素) 2.0%액(液) 토양시용구(土壤施用區) 및 대조구(對照區)는 83.29% 및 82.56을 보였다. 7. $3.3\;m^2$당 현미수량(玄米收量)은 수비시간(穗肥時間)에 유의차(有意差)를 인정(認定)하였고 수기비(穗期肥)가 빠른 출수기전(出穗期前) 21일(日)에 시용(施用)한 것이 1.192kg로서 가장 많았으며 수비시용방법간(穗肥施用方法間)에 있어서는 통계적(統計的)으로 고도(高度)의 유의차(有意差)를 보이고 있으며 요소(尿素) 2.0%액(液) 엽면살포구(葉面撒布區) 및 10%액(液) 토양시용구(土壤施用區)는 1.259kg 및 1.254kg으로써 현저(顯著)히 높고 요소(尿素) 2.0%액(液) 토양시용구(土壤施用區) 및 대조구(對照區)는 각각(各各) 1.149kg 및 1.095kg로써 낮았다. 8. 수비(穗肥)로서 요소(尿素)를 시용(施用)한 경우 식물체내(植物體內) (窒素含量)은 증대(增大)되었는데 요소엽면살포(尿素葉面撒布)가 토양시용(土壤施用)보다 효과적(效果的)이였으며 식물체내(植物體內) 요소함량(尿素含量)의 증대(增大)와 더불어 대체로 탄소함량(炭素含量)도 증대(增大)되는 경향(傾向)을 보였다.

  • PDF