• Title/Summary/Keyword: 쇼트피닝기어

Search Result 9, Processing Time 0.025 seconds

A Study on the Corrosion Characteristics of Gear Steel by Shot Peening (쇼트피닝에 의한 기어강의 부식특성에 관한 연구)

  • Kang, Jin-Shik;Kim, Tae-Hyung;Yoon, Jong-Ku;Cheong, Seong-Kyun;Lee, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.216-221
    • /
    • 2001
  • The surface treatment technique to increase corrosion resistance is very important in mechanical components of structures. Therefore, this paper investigates the effects of shot peening on the corrosion resistance of SCM 420steel. The results show that the surface compressive residual stress largely increases, which cause the increase of corrosion resistance.

  • PDF

Fatigue Design of Bevel Gear for Automobile by Shot Peening (쇼트피닝에 의한 자동차용 베벨기어의 피로설계)

  • Lee, Dong-Sun;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • The fatigue characteristics of bevel gear used for differential gear of automobile was investigated in this paper. From the A-N(Almen intensity-Number of fracture)curve of bevel gear it was shown that there was a specific time that have a maximum fatigue life. Optimal peening condition was 65m/s of project velocity and 8min of project time. Fatigue life was also investigated from the S-N curve between optimal peened specimen and unpeened specimen. Another very significant point is that the crack initiation of bevel gear by shot peening was generated in the subsurface from fractography. This paper shows that shot peening process tremendously improve fatigue characteristics of bevel gear.

A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears (침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구)

  • LYU, Sung-Ki;JEON, Hyung-Ju;Moon, Bong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.61-67
    • /
    • 1997
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs comparaed to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

A Study on the Evaluation of Bending Fatigue Strength in Shaving Gears (세이빙기어의 굽힘피로강도 평가에 관한 연구)

  • 박준철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.93-99
    • /
    • 2000
  • This study deals with the evaluation of bending fatigue strength in shaving gears, We manufactured gears using manufacture processes that are currently used in most gears manufacturing companies. The test gears are hobbed then the tooth surface are treated by a combination of shaving carbonizing and shot peening. The constant stress amplitude fatigue test is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. In this study we investigated the effect of shaving process and shot peening on fatigue strength, The effect of shaving process ad shot peening on the fatigue strength is evaluated quantitatively,. The enhancement of fatigue strength due to shaving process and shot peening is clarified

  • PDF

A Study on the Investigation of Optimal Peening Intensity for Shot Peened Spur Gear (쇼트피닝가공한 평기어의 최적 피닝강도 탐색에 관한 연구)

  • Cheong Seong-Kyun;Lee Dong-Sun;Lee Kook-Jin;Kim Tae-Hyung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.185-190
    • /
    • 2005
  • The shot peening process is often used to improve fatigue properties of metal parts. Among them, It is the most use in an auto-component. In order to achieve optimum, repeatable and reliable fatigue enhancement from the shot peening process, the important shot peening parameters must be controlled. In this paper, the optimum peening intensity (Almen intensity) condition is investigated by experiment. The Spur Gear steel was used to investigate shot peening effects. The fatigue life at $\sigma_a=1,050$ and $\sigma_a=1,250MPa$ first gently increases, then drops gently as peening intensity increases compared with unpeened specimen. Experimental results show that the optimum peening intensity range is $0.391\~0.434mmA$..So the fatigue strength and fatigue life have been tremendously increased by optimum-peening treatment. However, the fatigue strength and fatigue life have been decreased by over peeing.

  • PDF

A Study on the Effect of the Shot Peening in SCM420H Planetary Gear (SCM420H 유성기어의 쇼트피닝 효과에 관한 연구)

  • Ahn, In-Hyo;Ahn, Min-Ju;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • This study deals with the effect of the shot peening in SCM420H planetary gears. The hardness and roughness of the gear surface can be improved by shot blast and shot peening. there in, the shot peening techniques are welcomed especially as one of the physical surface improvement methods. The two treatments are used widely, because of the qualitative analysis of shot blast and shot peening has become possible and the surface treatment can be done with little costs compared with other surface improvement methods. Therefore, this study investigates the effects of shot blast and shot peening in surface shape. The fatigue strength test at a constant stress amplitude is performed by using an electrohydraulic serve-controlled pulsating tester. And fatigue test also explained characteristics of shot blast and shot peening of planetary gears.