• 제목/요약/키워드: 솔라 시뮬레이터

검색결과 19건 처리시간 0.031초

진공관형 태양열집열기의 성능분석 (Analysis of the Performance of Solar Collector with Evacuated Tubes)

  • 이귀현;임대식
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2002년도 동계 학술대회 논문집
    • /
    • pp.158-166
    • /
    • 2002
  • 진공관형 태양열집열기의 집열성능 및 집열특성 실험을 통하여 다음과 같은 결론을 얻을 수 있었다. 1) 집열성능 실험을 통하여 진공관형 태양열집열기의 순간집열효율이 60%로 높게 나타났다. 2) 진공관형 태양열집열기의 집열특성 실험에 의해 얻어진 결론은 다음과 같다. \circled1 경사각 0$^{\circ}$일 때 집열기에 조사된 광 강도는 630W/m$^2$이었으며, 5시간 24분의 광 조사 후 초기온도에 비해 물탱크내의 물 132$\ell$를 8.1$^{\circ}C$ 상승시켰다. \circled2 경사각 $10^{\circ}$일 때 광강도는 615W/m$^2$이었으며, 5시간 24분의 광 조사 후 초기온도에 비해 물탱크내의 물의 온도를 7.3$^{\circ}C$ 상승시켰다. \circled3 경사각 20$^{\circ}$일 때 광 강도는 605W/m$^2$이었으며, 5시간 24분의 광 조사 후 초기온도에 비해 물탱크의 물 132$\ell$을 6.6$^{\circ}C$ 상승시켰다. 집열기에 대한 솔라시뮬레이터의 경사각이 작을수록 광 강도가 커 물탱크내의 물 온도를 크게 상승시키는 것으로 나타났다.

  • PDF

Efficiency Improvement in Screen Printed Crystalline Silicon Solar Cell with Cu Plating

  • 정명상;강민구;송희은;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.313.1-313.1
    • /
    • 2013
  • 현재 결정질 실리콘 태양전지의 전 후면 전극의 형성은 스크린 프린팅 방법이 주를 이루고 있다. 스크린 프린팅 방법은 쉽고 빠르게 인쇄가 가능한 반면 단가가 높고 금속 페이스트에 첨가된 여러 혼합물에 의해서 전극과 기판 사이의 저항이 크다는 단점이 있다. 본 논문에서는 스크린 프린팅 방법으로 태양전지의 seed layer를 인쇄하고, Cu도금을 진행함으로써 태양전지의 전기적 특성을 비교하였다. 주요 전극 형성을 Cu 도금을 사용함으로써 전극과 기판사이의 저항을 감소시키고 값비싼 Ag페이스트를 값싼 Cu로 대체함으로써 가격을 낮출 수 있는 장점이 있다. 실험에 사용된 Si 웨이퍼 특성은 $156{\times}156$ mm2, 200 ${\mu}m$, 0.5-3.0 ${\Omega}{\cdot}cm$ and p-type 웨이퍼를 사용하였다. 웨이퍼는 표면조직화, p-n접합 형성, 반사방지막 코팅을 하였으며 스크린 프린팅 방법을 이용해 전 후면 전극을 인쇄하고 열처리 과정을 통해 전극을 형성하였다. 이 후 전면에 Cu도금을 실행하여 태양전지를 완성하였다. 완성된 태양전지는 솔라 시뮬레이터 및 TLM패턴을 이용하여 전기적 특성을 분석하였으며, SEM과 linescan, 광학현미경 등을 이용하여 전극을 분석하였다.

  • PDF

Poly-imide 기판에서 제조된 flexible CIGS 태양전지의 Mo strain 개선을 통한 효율 향상 연구

  • 명아론;김재웅;김혜진;박세진;정채환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.399.2-399.2
    • /
    • 2016
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. Poly-imide와 같은 유연기판은 공정온도가 $400^{\circ}C$이하로 낮고 기판이 매우 얇아 기존 Mo 공정을 개선하여야한다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 기존 bi-layer Mo의 bottom layer의 두께를 조절하여 박막의 strain을 조절하였다. 유연기판으로는 SKC KOLON에서 제조된 GL type의 기판을 사용하였다. 기판의 두께는 50um이다. 먼저 Mo의 bottom layer 두께 비율을 기존 12.5%에서 50%로 증가 시켰으며 전체 박막의 두께 역시 900nm에서 500nm로 두께를 감소시키며 실험을 실시하였다. 그 후 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 이때 공정온도는 기존 공정온도에서 450, $400^{\circ}C$로 낮추어 흡수층을 제조하였다. 소자 제조 후 초기 Mo의 strain 개선과 저온공정이 적용되지 않은 경우 4.4%에서 공정 최적화 후 13%로 효율이 증가하였다. 제조된 흡수층은 SEM, XRF, XRD등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.

  • PDF

Stainless steel 기판에서 제조된 CIGS 박막 태양전지의 ZnO 확산 방지막을 이용한 deep level defect 감소 연구

  • 김재웅;김혜진;김기림;김진혁;정채환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.393-393
    • /
    • 2016
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. Stainless steel과 같은 철강기판의 경우 Fe, Ni, Cr등의 불순물이 확산되어 흡수층의 특성을 저하시켜 효율을 감소시킨다. 따라서 이러한 철강 기판의 경우 불순물의 확산을 방지하는 확산방지막이 필수적이다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 기존의 두껍고 추가 장비가 요구되는 SiOx나 Al2O3 대신 200nm 이하의 ZnO 박막을 이용하여 확산방지막을 제조하였다. 유연기판으로 STS 430 stainless steel을 이용하였다. 먼저 stainless steel 기판을 이용하여 기판에 의한 흡수층의 특성을 분석하였으며 ZnO 확산 방지막의 유무 및 두께에 따른 흡수층 및 소자의 특성을 분석하였다. 이때 확산 방지막은 기존 TCO 공정에서 사용되는 i-ZnO를 사용하였으며 RF sputter를 이용하여 50~200nm로 두께를 달리하며 특성 비교를 실시하였다. 효율은 확산방지막을 적용하지 않았을 때 약 5.9%에서 확산 방지막 적용시 약 10.7%로 증가하였다. 그 후 기판으로부터 확산되는 불순물의 유입에 의한 결함을 분석하기 위해 DLTS를 이용하여 소자 특성을 분석하였다. 온도는 80~300K으로 가변하며 측정을 실시하였으며 그 후 계산을 통해 activation energy와 capture cross section 값을 구하였다. DLTS 분석 결과 Ni이 CIGS 흡수층으로 확산되어 NiCu anti-site를 형성하여 태양전지의 효율을 감소시키는 것을 확인하였다. 모든 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 제조된 흡수층은 SEM, XRF, XRD, GD-OES, PL, Raman등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.

  • PDF

유연성 스테인레스와 폴리이미드 기판에서 제조된 CIGS 박막 태양전지의 효율 개선 및 특성 연구

  • 김재웅;김혜진;김기림;김진혁;정채환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.245-245
    • /
    • 2015
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. 특히 CIGS 태양전지에서는 Na의 역할이 매우 중요한데 유연기판의 경우 이러한 Na이 없을 뿐만 아니라 철강기판의 경우 Fe, Ni, Cr등의 불순물이 확산되어 흡수층의 특성을 저하시켜 효율을 감소시킨다. 따라서 이러한 철강 기판의 경우 불순물의 확산을 방지하는 확산방지막이 필수적이다. 또한 플라스틱기판의 경우 내열성이 낮아 저온에서 공정을 진행해야하는 단점이 있다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 유연기판으로 STS 430 stainless steel과 poly-imide를 이용하여 특성 개선을 진행하였다. 먼저 stainless steel과 Poly-imide, soda-lime glass, coning glass의 기판을 이용하여 기판에 따른 흡수층의 특성을 비교 분석하였으며 stainless steel 기판을 이용하여 확산 방지막의 유무 및 두께에 따른 흡수층 및 소자의 특성을 분석하였다. 이때 확산 방지막은 기존 TCO 공정에서 사용되는 i-ZnO를 사용하였으며 RF sputter를 이용하여 50~200nm로 두께를 달리하며 특성 비교를 실시하였다. 이때 효율은 확산방지막을 적용하지 않았을 때 약 5.9%에서 확산 방지막 적용시 약 10.6%로 증가하였다. 또한 poly-imide 기판을 이용하여 $400^{\circ}C$이하에서 흡수층을 제조하여 특성평가를 진행하였으며 소자 제조 후 효율은 약 12.2%를 달성하였다. 모든 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 제조된 흡수층은 SEM, XRF, XRD, GD-OES, PL, Raman등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.

  • PDF

고밀도 나노선을 이용한 태양전지 구현 및 특성 분석

  • 김명상;황정우;지택수;신재철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.323-323
    • /
    • 2014
  • 기존의 태양전지 기술은 기술 장벽이 매우 낮고 대량 생산을 통한 단가 절감하는 구조를 가지고 있어 대규모 자본을 가진 후발 기업에게 잠식되기 쉽다. 그러나, III-V족 화합물 반도체를 이용한 집광형 고효율 태양전지는 기술 장벽이 매우 높은 기술 집약 산업이므로 독자적인 기술을 확보하게 되면 독점적인 시장을 확보 할 수 있어 미래 고부가 가치 산업으로 적합하다. 특히 III-V족 화합물 반도체 태양전지는 III족 원소(In, Ga, Al)와 V족 원소(As, P)의 조합으로 0.3 eV~2.5 eV까지 밴드갭을 가지는 다양한 박막 제조가 가능하여 다양한 흡수 대역을 가지는 태양전지 제조가 가능하기 때문에 다중 접합 태양전지 제작이 가능하다. 또한 III-V 화합물 반도체는 고온 특성이 우수하여 온도 안정성 및 신뢰성이 우수하고, 또한 집광 시 효율이 상승하는 특성이 있어 고배율 집광형 태양광 발전 시스템에 가장 적합하다. Si 태양전지의 경우 100배 이하의 집광에서 사용하나, III-V 화합물 반도체 태양전지의 경우 500~1000배 정도의 고집광이 가능하다. 이러한 특성으로 III-V 화합물 반도체 태양전지 모듈 가격을 낮출 수 있고, 따라서 Si 태양전지 시스템과 비교하여 발전 단가 면에서 경쟁력을 확보할 수 있다. III-V 화합물 반도체는 다양한 밴드갭 에너지를 가지는 박막 제조가 용이하고, 직접천이(direct bandgap) 구조를 가지고 있어 실리콘에 비해 광 흡수율이 높다. 또한 터널정션(tunnel junction)을 이용하면 광학적 손실과 전기적 소실을 최소화 하면서 다양한 밴드갭을 가지는 태양전지를 직렬 연결이 가능하여 한 번의 박막 증착 공정으로 넓은 흡수대역을 가지며 효율이 높은 다중접합 태양전지 제작이 가능하다. 이에 걸맞게 본연구에서는 화학기상증착장치(MOCVD)를 이용하여 InAsP 나노선을 코어 쉘 구조로 성장하여 태양전지를 제작하였다. P-type Dopant로는 Disilane (Si2H6)을 전구체로 사용하였다. 또한 Benzocyclobutene (BCB) 폴리머를 이용하여 Dielectric을 형성하였고 Sputtering 방법으로 증착한 ZnO을 투명 전극으로 사용하여 나노선 끝부분과 실리콘 기판에 메탈 전극을 형성하였다. 이를 통해 제작한 태양전지는 솔라시뮬레이터로 측정했을때 최고 7%에 달하는 변환효율을 나타내었다.

  • PDF

순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성 (Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method)

  • 안준섭;한은미
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide를 ZnCl2:NaCl 전해질과 함께 교반한 후 순환 전압전류법에 의해 전기화학적으로 제막하여 유기태양전지용 전자수송층 제막과정을 단순화하고 이를 갖는 유기태양전지를 제작하였다. 소자의 구조는 FTO/ZnO:graphene 전자수송층/P3HT:PCBM 광활성층/PEDOT:PSS 정공수송층/Ag이다. ETL의 형태 및 화학적 특성은 주사전자현미경(scanning electron microscopy, SEM), X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS), 라만 분광법으로 확인하였다. XPS 측정결과 ZnO 금속산화물 및 탄소결합이 동시에 확인되었고, 라만 분광법에서 ZnO와 graphene 피크를 확인하였다. 제작한 태양전지의 전기적 특성을 솔라시뮬레이터로 측정하였고 0.05 V/s의 속도로 2회 제막한 ETL 소자에서 1.94%의 가장 높은 광전변환효율을 나타내었다.

나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구 (Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System)

  • 김광민;김형섭;최다현;이민지;박윤찬;추원식;천두만;이선영
    • 마이크로전자및패키징학회지
    • /
    • 제23권2호
    • /
    • pp.65-71
    • /
    • 2016
  • 본 연구에서는 나노 입자 적층 시스템(Nano Particle Deposition System, NPDS)을 이용하여 전기변색소자의 작동 전극을 적층하고 또한 염료 감응 태양전지의 반도체 층으로 사용되는 $TiO_2$층 및 전기변색소자의 이온 저장 층으로 사용되는 Antimony Tin Oxide(ATO) 층을 제작하였다. NPDS는 상온 건식 분말 적층법으로 노즐을 통하여 초음속으로 가속된 분말의 높은 에너지를 이용하여 기판에 적층하는 새로운 개념의 건식 적층 방법이다. 본 연구에서 코팅된 물질의 두께는 전기변색소자의 투과율에 영향을 끼치는데, 이는 표면 프로파일 측정법(surface profiling method)으로 측정하였으며, 적층된 $TiO_2$와 ATO 및 복합 층의 미세 구조를 확인하기 위해 SEM을 이용한 분석을 진행하였다. 한편 염료 감응 태양전지의 광 변환 효율은 솔라 시뮬레이터로 분석하였다. 또한 UV-visible spectrometer와 power source를 이용하여 630 nm 대역에서 전기 변색 소자가 갖는 투과도 변화와 낮은 전압에서의 작동 및 변색 횟수를 측정하였으며, 결과적으로 상기 과정을 거쳐 제작되고, 측정된 염료 감응 태양전지 - 전기 변색 통합 구조 소자를 자체 제작한 에너지 하베스팅 시스템과 연결하여 통합 구조 소자 내 태양전지의 전압 발생을 통해 자체 구동이 가능한 전기 변색 소자 시스템 제작에 성공하였다. NPDS를 통해 제작된 변색 소자의 경우, 최대 49%의 투과도 변화와 500회 작동에서 C-V curve를 유지함을 측정하여 성능과 내구성을 입증하였고, 통합 소자 내 태양 전지의 광 변환 효율은 최대 2.55%로 측정되었으며, 통합 소자 내 변색 소자의 경우 최대 26%의 투과도 변화를 보였다.

염료감응태양전지의 Au/Pt 이중 촉매층의 전해질과의 반응에 따른 열화 (Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells)

  • 노윤영;송오성
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.4013-4018
    • /
    • 2014
  • 염료감응형 태양전지 상대전극부에 Au/Pt 이중 촉매층 적용에 따른 전해질과의 반응안정성 확인과 에너지변환효율 변화를 확인하기 위해 $0.45cm^2$ 면적을 가진 glass/FTO/blocking layer/$TiO_2$/dye/electrolyte/50nm Pt/50nm Au/glass 구조의 소자를 준비하였다. 비교를 위해 평탄한 유리기판 위에 증착된 100nm 두께의 Pt 상대전극을 채용한 소자도 동일한 방법으로 확인하였다. 솔라 시뮬레이터와 퍼텐쇼 스탯을 통해 단락전류밀도, 개방전압, 필팩터, 에너지변환효율의 광전기적 특성을 확인하였다. Au/Pt 이중층과 전해질의 반응을 확인하기 위해 광학현미경을 통해 전해질 주입 후 0~25분 후 이중층의 미세구조를 확인하였다. 광전기적 특성 분석 결과, 평탄한 유리기판 위의 단일층 Pt의 에너지변환효율은 4.60%를 나타내고 시간 의존성이 없었다. 반면, Au/Pt의 경우 전해질 주입 직 후, 5분 후, 25분 후의 에너지 변환 효율이 각각 5.28%, 3.64%, 2.09%로 시간이 지남에 따라 감소하였다. 광학현미경 분석을 통하여, 전해질 주입 직 후, 5분 후, 25분 후의 부식면적이 각각 0, 21.92, 34.06%로 Au와 전해질이 반응하여 부식되는 것을 확인하였고, 이를 통해 Au/Pt가 전기적으로 시간이 지남에 따라 촉매활성도와 효율이 감소하는 것을 확인하였다. 따라서 염료감응태양전지에 Au/Pt 촉매는 단기적으로는 기존 Pt only보다 우수하였으나 장기적으로는 전해질과의 안정성이 미흡함을 확인하였다.