• Title/Summary/Keyword: 솔라 셀

Search Result 56, Processing Time 0.027 seconds

A Study on the Estimation of Average Service Life for New Technology Products-in Case of Solor-cell (신기술 제품의 ASL 추정-솔라셀 사례 중심으로)

  • Cho, Jin-Hyung;Lee, S.J.;Oh, H.S.;Baek, S.S.;Kim, O.J.;Kim, B.K.;Jeong, K.S.;Park, S.H.;Kwon, D.C.;Ko, J.H.;Ryu, J.H.;Shim, S.C.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.106-115
    • /
    • 2014
  • Until now, because a new product (or facility) launched in market has been retired from one year of age, we can have had ASL by stub-curve method by Iowa curve. Recently, many innovative products with important role in market like display and solar-cell etc. are more durable and, what are better, they have the constant variance in ASL because of their good quality. Of course, there are some ones like smart mobile phone with relatively big dispersion in ASL. Estimating ASL of products like display and solar-cell etc., the new approach is needed. In this paper a new method applied traditional Iowa curve with accelerated reliability test (indoor/outdoor) etc. is proposed.

Design of a Triple-input Energy Harvesting Circuit with MPPT Control (MPPT 제어기능을 갖는 삼중입력 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.346-349
    • /
    • 2013
  • This paper describes a triple-input energy harvesting circuit using solar, vibration and thermoelectric energy with MPPT(Maximum Power Point Tracking) control. The designed circuit employs MPPT control to harvest maximum power available from a solar cell, PZT vibration element and thermoelectric generator. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into a sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relation between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed chip occupies $945{\mu}m{\times}995{\mu}m$.

  • PDF

Solar Energy Harvesting Wireless Sensor Network Simulator (태양 에너지 기반 무선 센서 네트워크 시뮬레이터)

  • Yi, Jun Min;Kang, Min Jae;Noh, Dong Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.477-485
    • /
    • 2015
  • Most existing simulators for wireless sensor networks(WSNs) are modeling battery-based sensors and providing MAC and routing protocols designed for battery-based WSNs. However, recently, as energy harvesting sensor systems have been studied more extensively, there is an increasing need for appropriate simulators, but few related studies have employed such simulators. Unlike existing simulators, simulators for energy harvesting WSNs require a new energy model that is integrated with the energy-harvesting model, rechargeable battery model, and energy-consuming model. Additionally, it should enable the applications of the well-known MAC and routing protocols designed for energy-harvesting WSNs, as well as a user-friendly interface for convenience. In this work, we design and implement a user-friendly simulator for solar energy-harvesting WSNs.

A Multi-Harvested Self-Powered Sensor Node Circuit (다중 에너지 수확을 이용한 자가발전 센서노드 회로)

  • Seo, Yo-han;Lee, Myeong-han;Jung, Sung-hyun;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.585-588
    • /
    • 2014
  • This paper presents a self-powered sensor node circuit using photovoltaic and vibration energy harvesting. The harvested energy from a solar cell and a vibration device(PZT) is stored in a storage capacitor. The stored energy is managed by a PMU(Power Management Unit). In order to supply a stable voltage to the sensor node, an LDO(Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter), and 10-bit digital output data corresponding to current temperature is obtained. The proposed circuit is designed in a 0.35um CMOS process, and the designed chip size including PADs is $1.1mm{\times}0.95mm$.

  • PDF

Technology of Minimized Damage during Loading of a Thin Wafer (박판 웨이퍼의 적재 시 손상 최소화 기술)

  • Lee, Jong Hang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.321-326
    • /
    • 2021
  • This paper presents a technique to minimize damaged wafers during loading. A thin wafer used in solar cells and semiconductors can be damaged easily. This makes it difficult to separate the wafer due to surface tension between the loaded wafers. A technique for minimizing damaged wafers is to supply compressed air to the wafer and simultaneously apply a small horizontal movement mechanism. The main experimental factors used in this study were the supply speed of wafers, the nozzle pressure of the compressed air, and the suction time of a vacuum head. A higher supply speed of the wafer under the same nozzle pressure and lower nozzle pressure under the same supply speed resulted in a higher failure rate. Furthermore, the damage rate, according to the wafer supply speed, was unaffected by the suction time to grip a wafer. The optimal experiment conditions within the experimental range of this study are the wafer supply speed of 600 ea/hr, nozzle air pressure of 0.55 MPa, and suction time of 0.9 sec at the vacuum head. In addition, the technology improved by the repeatability performance tests can minimize the damaged wafer rate.

Water repellency of glass surface coated with fluorosilane coating solutions containing nanosilica (나노실리카를 함유한 불소실란으로 코팅된 유리 표면의 발수 특성)

  • Lee, Soo;Kim, Keun Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.531-540
    • /
    • 2019
  • Hydrophilic and hydrophobic nanosilica and tetraethyl orthosilicate (TEOS) as a coupling agent was used to form a coarse spike structure as well as an excellent reactive hydroxyl groups on the glass surface. Then, a second treatment was carried out using a trichloro-(1H,1H,2H,2H)perfluorooctylsilane(TPFOS) solution for ultimate water repellent glass surface formation. The formation of hydrophobic coating layer on glass surface using silica aerosol, which is hydrophobic nanosilica, was not able to form a durable hydrophobic coating layer due to the absence of reactive -OH groups on the surface of nanosilica. On the other hand, a glass surface was first coated with a coating liquid prepared with hydrophilic hydroxyl group-containing nanosilica and hydrolyzed TEOS, and then coated with a TPFOS solution to introduce a hydrophobic surface on glass having a water contact angle of $150^{\circ}$ or more. The sliding angle of the coated glass was less than $1^{\circ}$, which meant the surface had a super water-repellent property. In addition, as the content of hydrophilic nanosilica increased, the optical transmittance decreased and the optical transmittance also decreased after 2nd coating with the TPFOS solution. The super-hydrophobic property of the coated glass was remained up to 50 times of rubbing durability test, but only hydrophobic property was shown after 200 times of rubbing durability test. Conclusively, the optimal coating conditions was double 1st coatings with the HP3 coating solution having a hydrophilic nanosilica content of 0.3 g, and subsequent 2nd coating with the TPFOS solution. It is believed that the coating solution thus prepared can be used as a surface treatment agent for solar cells where light transmittance is also important.