DOI QR코드

DOI QR Code

Water repellency of glass surface coated with fluorosilane coating solutions containing nanosilica

나노실리카를 함유한 불소실란으로 코팅된 유리 표면의 발수 특성

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Keun Min (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 김건민 (창원대학교 화공시스템공학과)
  • Received : 2019.06.11
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Hydrophilic and hydrophobic nanosilica and tetraethyl orthosilicate (TEOS) as a coupling agent was used to form a coarse spike structure as well as an excellent reactive hydroxyl groups on the glass surface. Then, a second treatment was carried out using a trichloro-(1H,1H,2H,2H)perfluorooctylsilane(TPFOS) solution for ultimate water repellent glass surface formation. The formation of hydrophobic coating layer on glass surface using silica aerosol, which is hydrophobic nanosilica, was not able to form a durable hydrophobic coating layer due to the absence of reactive -OH groups on the surface of nanosilica. On the other hand, a glass surface was first coated with a coating liquid prepared with hydrophilic hydroxyl group-containing nanosilica and hydrolyzed TEOS, and then coated with a TPFOS solution to introduce a hydrophobic surface on glass having a water contact angle of $150^{\circ}$ or more. The sliding angle of the coated glass was less than $1^{\circ}$, which meant the surface had a super water-repellent property. In addition, as the content of hydrophilic nanosilica increased, the optical transmittance decreased and the optical transmittance also decreased after 2nd coating with the TPFOS solution. The super-hydrophobic property of the coated glass was remained up to 50 times of rubbing durability test, but only hydrophobic property was shown after 200 times of rubbing durability test. Conclusively, the optimal coating conditions was double 1st coatings with the HP3 coating solution having a hydrophilic nanosilica content of 0.3 g, and subsequent 2nd coating with the TPFOS solution. It is believed that the coating solution thus prepared can be used as a surface treatment agent for solar cells where light transmittance is also important.

친수성 및 소수성 나노실리카를 tetraethyl orthosilicate(TEOS)를 커플링제로 사용하여 유리 표면에 거친 스파이크 구조 형성과 반응성 hydroxyl기를 동시에 도입한 후 불소를 함유한 실란으로 2차 코팅처리하여 궁극적으로 발수성 유리 표면 형성의 최적 조건을 확립하는 연구를 수행하였다. 소수성 나노실리카인 실리카 에어로졸을 이용한 초소수 도막의 형성은 나노실리카 표면에 반응성인 -OH기가 존재하지 않아 내구성이 있는 소수성 도막을 형성할 수 없었다. 이에 반하여 친수성기를 가진 나노실리카와 가수분해된 TEOS를 포함하는 코팅액 이용하여 유리 표면을 1차 코팅한 후 2차로 trichloro-(1H,1H,2H,2H)perfluorooctylsilane(TPFOS) 용액으로 코팅하여 $150^{\circ}$ 이상의 수접촉각을 가지는 초소수 표면을 제조하였으며, $1^{\circ}$ 이하의 물 슬라이딩각을 보여 초발수성도 동시에 가지고 있었다. 이에 덧붙여 친수성 나노실리카의 함량이 증가할수록 광투과도가 감소하였으며, TPFOS 용액에 의해서도 광투과도가 감소하였다. 코팅된 유리시편의 내구성 50회 문지름까지는 초소수성을 유지하였으나, 200회 문지름에서는 단지 소수성만을 유지하였다. 결론적으로 최적의 코팅액의 조건은 친수성 나노실리카의 함량이 0.3 g인 HP3 코팅액을 2회 코팅한 후 2차로 TPFOS 용액으로 코팅하는 것이었다. 이렇게 제조된 코팅액은 광투과도가 중요한 솔라셀의 표면 처리제로 사용이 가능할 것으로 판단된다.

Keywords

HGOHBI_2019_v36n2_531_f0001.png 이미지

Fig. 1. AFM photos of glasses coated with different coating solutions: (A) SHP3 (B) SHP5 (C) HP3.

HGOHBI_2019_v36n2_531_f0002.png 이미지

Fig. 2. Transmittance of one-time coated glasses with HP or SHP series coating solutions.

HGOHBI_2019_v36n2_531_f0003.png 이미지

Fig. 3. AFM photos of glasses coated with different coating solutions: (A) SHP1-2 (B) SHP2-2 (C) SHP3-2.

HGOHBI_2019_v36n2_531_f0004.png 이미지

Fig. 4. Transmittance of 2-time coated glasses with HP series coating solutions.

HGOHBI_2019_v36n2_531_f0005.png 이미지

Fig. 5. Transmittance of 3-time coated glasses with HP series coating solutions.

Table 1. Composition of coating solutions with hydrophilic fumed silica or hydrophobic silica aerogel

HGOHBI_2019_v36n2_531_t0001.png 이미지

Table 2. Contact angles of glass after cleaning

HGOHBI_2019_v36n2_531_t0002.png 이미지

Table 3. Compositions and water contact angle of TEOS and TPFOS solutions

HGOHBI_2019_v36n2_531_t0003.png 이미지

Table 4. Water contact angles of TEOS and TPFS solutions with hydrolysis time

HGOHBI_2019_v36n2_531_t0004.png 이미지

Table 6. Compositions and water contact angles of hydrophobic ES-1 series coating solutions

HGOHBI_2019_v36n2_531_t0005.png 이미지

Table 5. Compositions of hydrophilic TEOS coating solution

HGOHBI_2019_v36n2_531_t0006.png 이미지

Table 7. Water contact angle of glass coated with HP and SHP series coating solutions containing hydrophilic fumed silica

HGOHBI_2019_v36n2_531_t0007.png 이미지

Table 8. Water contact angle of glasses repeatedly coated with SH coating solution and finally with TPFOS

HGOHBI_2019_v36n2_531_t0008.png 이미지

Table 9. Sliding angles of glasses double coated with SH series coating solution and subsequently with TPFOS solution

HGOHBI_2019_v36n2_531_t0009.png 이미지

Table 10. Water contact angles of coated glasses after durability test by wiping

HGOHBI_2019_v36n2_531_t0010.png 이미지

References

  1. T. Y. Kim, J. Jeong, I. D. Chung, "Preparation of superhydrophobic surface using agglomeration control of silica nanoparticles by organic solvent and non-fluoride self-assembled monolayers", J. Adhesion and Interface, Vol. 16, No. 3, pp. 116-121, (2015). https://doi.org/10.17702/jai.2015.16.3.116
  2. K. Askar, B. M. Philips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, B. Jiang, "Self-assembled self-cleaning broadband anti-reflection coatings", Colloids and Surface A: Physicochemical and Engineering Aspects, Vol. 139, pp. 84-100, (2013).
  3. D. A. Bamerjee, A. J. Kessman, D. R. Cairns, K. A. Sierros, "Tribology of silica nanoparticle-reinforced, hydrophobic sol-gel composite coatings", Surf. & Coatings Tech., Vol. 260, pp. 214-219, (2014). https://doi.org/10.1016/j.surfcoat.2014.07.091
  4. T. S. Lin, C. F. Wu, C. T. Hsieh, "Enhancement of water-repellent performance on functional coating by using the Taguchi method", Surf. & Coatings Tech., Vol. 200, pp. 5253-5258, (2006). https://doi.org/10.1016/j.surfcoat.2005.06.019
  5. Z. Yang, X. Liu, Y. Tian, "Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process", Colloids and Surfaces A, Vol. 506, pp. 205-121, (2019).
  6. S. C. Go, N. Y. Kim, Y. H. Ahn, "Facile fabrication of superhydrophobic composite film using spray coating", J. Kor. Chem. Soc., Vol. 56, No. 3, pp. 392-396 (2012). https://doi.org/10.5012/jkcs.2012.56.3.392
  7. J. N. Park, Y. S. Shin, W. G. Lee, "Formation of polypropylene thin films with superhydrophobic surface", Appl. Chem. Eng., Vol. 25, No. 6, pp. 598-601, (2014). https://doi.org/10.14478/ace.2014.1098
  8. Y. C. Sheen, W. H. Chang, W. C. Chen. Y. H. Chang, Y. C. Hung, F. C. Chang, "Non-fluorinated superamphiphobic surfaces through sol-gel processing of methyltriethoxysilane and tetraethoxysilane", Materials Chemistry and Physics, Vol. 114, pp. 63-68, (2009). https://doi.org/10.1016/j.matchemphys.2008.07.132
  9. H. Lei, J. Xiao, L. Zheng, M. Xiong, Y. Zhu, J. Qian, Q. Zhuang, Z. Han, "Superhydrophobic coatings based on colloid silica and fluorocopolymer", Polymer, Vol. 86, pp. 22-31, (2016). https://doi.org/10.1016/j.polymer.2016.01.026
  10. S. M. Park, I. J. Kwon, J. Y. Kim, C. N. Kim, J. H. Yeum, N. S. Yoon, "A study on the super-hydrophobicity of poly(ethylene terephthalate) fabric by $TiO_2$ nano-particles coatings", J. Kor. Soc. of Dyers and Finishers, Vol. 21, No. 1, pp. 30-37, (2009).
  11. P. Varshney, J. Lomga, P. K. Gupta, S. S. Mohapatra, A. Kumar, "Durable and regenerable superhydrophobic coatings for aluminium surfaces with excellent self-cleaning and anti-fogging properties", Tribology International, Vol. 119, pp. 38-44, (2018). https://doi.org/10.1016/j.triboint.2017.10.033
  12. E. K. Kim, C. S. Lee, S. S. Kim, "Superhydrophobicity of electrospraysynthesized fluorinated silica layers", J. Colloid and Int. Sci., Vol. 368, pp. 599-602, (2012). https://doi.org/10.1016/j.jcis.2011.11.047
  13. Y. Guo, E. Zhao, X. Guo, D. Tang, "Fabrication of self-assembled hydrophobic fluorinated silica particulate film", J. of Fluorine Chem., Vol. 218, pp. 27-35, (2019). https://doi.org/10.1016/j.jfluchem.2018.11.013
  14. W. Liao, S. Zheng, X. Huang, L. Zhao, L. Ye, Y. He, S. Kang, "Preparation and hydrophobicity improvement of fluorinated poly(styrene-acrylate)/ferrocene composites", Progress in Organic Coatings, Vol. 128, pp. 32-39, (2019). https://doi.org/10.1016/j.porgcoat.2018.12.006
  15. E. J. Kim, J. H. Park, I. K. Paik, "Study of hydrophobic and barrier properties of vinyltriethoxysilane modified poly(vinyl alcohol)/ poly(acrylic acid) films", Clean Tech., Vol. 18, No. 1, 57-62, (2012). https://doi.org/10.7464/ksct.2012.18.1.057
  16. H. J. Jeong, D. K. Kim, S. B. Lee, S. H. Kwon, K. Kadono, "Preparation of waterrepeelent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane", J. Colloid and Int. Sci., Vol. 235, pp. 130-134, (2001). https://doi.org/10.1006/jcis.2000.7313
  17. S. A. Kamal, R. Ritikos, S. A. Rahman, "Wetting behavior of carbon nitride nanostructures grown by plasma enhanced chemical vapor deposition technique", Appl. Surf. Sci., Vol. 328, pp. 146-153, (2015). https://doi.org/10.1016/j.apsusc.2014.12.001
  18. R. V. Lakshmi, B. J. Basu, "Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide", J. Colloid and Inter. Sci., Vol. 339, pp. 454-460, (2009). https://doi.org/10.1016/j.jcis.2009.07.064
  19. J. Cremaldi, B. Bhushan, "Fabrication of bioinspired, self-cleaning superliquiphilic/ phobic stainless steel using different pathways", J. Colloid and Inter. Sci., Vol. 518, pp. 284-297, (2018). https://doi.org/10.1016/j.jcis.2018.02.034
  20. H. E. Lim, J. S. Park, W. D. Kim, "Micro/nanostructured Superhydrophobic Surface", J. of Elastomers and Composites, Vol. 44, pp. 244-251, (2009).
  21. J. Marczak, M. Kargol, M. Psarski, G. Celichowski, "Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties", Appl. Surf. Sci., Vol. 380, pp. 91-100, (2016). https://doi.org/10.1016/j.apsusc.2016.02.071
  22. J. H. Kim, J. H. Hwang, T. Y. Lim, S. H. Kim, "Fabrication and properties of superhydrophobic $SiO_2$ thin film by sol-gel method", J. Kor. Cryctal Growth and Crystal Tech., Vol. 19, No. 6, pp. 277-281 (2009).
  23. Y. Guo, E. Zhao, X. Guo, D. Tang, "Fabrication of self-assembled hydrophobic fluorinated silica particulate film", J. of Fluorine Chemistry, Vol. 218, pp. 27-35, (2019). https://doi.org/10.1016/j.jfluchem.2018.11.013