• Title/Summary/Keyword: 손상 선박

Search Result 224, Processing Time 0.025 seconds

Study on Section Properties of Asymmetric-Sectioned Vessels (선박의 비대칭 단면 특성에 대한 연구)

  • Choung, Joon-Mo;Kim, Young-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

Physicochemical Characteristics of CDPF according to Ash a Cleaning agent (Ash 세정제에 따른 CDPF의 물리화학적 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.641-647
    • /
    • 2017
  • In order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the physicochemical properties according to ash cleaning agents of CDPF for Diesel Engines. Penetrating agents with strong penetration into ash and a surfactant component to mix water and oil were prepared properly. The cleaning characteristics of S1 sample were good. Washcoat loss rate of S1 sample was lower by about 2.2% because of less KOH component and lower Na2SiO3 content. Washcoat loss rate of S4 sample with an added KOH and Na2SiO3 components by penetration agents was increased by about 13%. In terms of less than about 13% of CDPF's washcoat loss rate, it was able to reduce the harmful gas components.

The Legal Response and Future Tasks regarding Oil-Spill Damage to Korea - Focusing on the Hebei Spirit oil-spill (한국의 해양유류오염피해에 대한 법적 대응과 과제 - HEBEI SPIRIT호 유류유출사고를 중심으로 -)

  • Han, Sang-Woon
    • Journal of Environmental Policy
    • /
    • v.7 no.3
    • /
    • pp.89-120
    • /
    • 2008
  • With petroleum being a major source of energy in Korea, the quantity of petroleum transported via ocean routes is on its way up due to increased consumption. Due to the increase, more than 300 cases of pollution caused by petroleum occur annually. Moreover, the number of oil-spill accidents is also on the rise. Causes of such accidents, not including the disposal of waste oil on purpose, turn out to be human error during navigation or defects in the vessels, showing that most accidents are caused by humans. Therefore, to prevent future oil spills, it is imperative that navigation efficiency be enhanced by improving the quality of navigators and replacing old vessels with newer ones. Nevertheless, such improvements cannot occur overnight, so long- and mid-term efforts should be made to achieve it institutionally. As large-scale oil-spill accidents can happen at anytime along the coastal waters of Korea, it is necessary to set-up institutional devices which go beyond the compensation limit of 92FC. The current special law regarding this issue has its limits in that it prescribes compensation be supplemented solely by national taxes. Therefore, the setting-up of a new 'national fund' is recommended for consideration rather than to subscribe to the '2003 Convention for the Supplementary Fund'. It is strongly suggested that a National fund be created from fees collected from oil companies based on the risks involved in oil transportation and according to the profiteers pay principle. In addition, a public fund should be created to handle general environmental damage, such as the large-scale destruction of the ecosystem, which is distinct from the economic damage that harms the local people. The posterior responses to the large-scale oil spill have always been unsatisfactory because of the symbolic nature of the disasters included in such accidents. Oil-spills can be prevented in advance, because they are caused by human beings. But once they occur, they inflict long-term damage to both human life and the natural ecosystem. Therefore, the best response to future oil-spills is to work to prevent them.

  • PDF

Empirical Analysis of the Determinants for Shippers' Selection of Gwangyang Port (화주의 광양항 선택 결정요인에 관한 실증분석)

  • Choe, Seong-Hui
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.4
    • /
    • pp.199-217
    • /
    • 2008
  • Many studies have identified the determinants of shippers' selection of ports, and of these, a number have repetitively cited major elements. However, different researchers came up with somewhat different research results depending on the position and preference of research targets. Accordingly, to deduce the determinants of shippers' selection of Gwangyang Port, appropriate research and analysis is required in addition to literature study. This study first deduced from previous studies the determinants that have influence on shippers when selecting a port and positively analyzed the effects of those determinants on the shippers using Gwangyang Port. In this regard, whether shippers using Gwangyang Port have continuously used the port was set as a dependent variable, and port service, port facilities, location of ports, port costs, and other determinants for port selection deduced in the previous studies were set as independent variables. This study's analysis finds shippers using Gwangyang Port are all influenced by the elements of port service, port facilities, location of ports, and port costs in their selection of Gwangyang Port. Their degree of importance is in the order of port costs, location of ports, port service and port facilities. This indicates that shippers consider port costs and location of ports more important than port facilities in their selection of a port.

  • PDF

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.

Optimization for Inspecdtion Planning of Ship Structures Considering Corrosion Effects (부식효과를 고려한 선체구조 검사계획안의 최적화)

  • Sung-Chan Kim;Jang-Ho Yoon;Yukio Fujimoto
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.137-146
    • /
    • 1999
  • Inspection becomes to be important in the safety of structure and economical viewpoint, because structural damage accompanies lots of economical cost and social problems. Especially ship structure is composed of a lot of members and it is impossible to inspect all members continuously. The purpose of this paper is to get optimal inspection plan containing inspection time and method. Crack is one of major modes on the structural failure and can lead to collapse of structure. In this paper, the deteriorating process, which contains inspection to detect the crack before the propagation to large crack, is idealized as Markov chain model. Genetic algorithm is also used to accomplish the optimization of inspection plan. Especially, the probabilistic characteristics of cracks are changed, because ship is operating in corrosive environments and the scantling of structural members is reduced due to corrosion. Non-stationary Markov chain model is used to represent the process of corrosion in structural members. In this paper, the characteristics of indivisual inspection plan are compared by numerical examples for the change of corrosion rate, the cost due to scheduled system down and target failure probability. From the numerical example, it can be seen that the improvement of fatigue life for the members with short fatigue life is the most effective way in order to reduce total maintenance cost.

  • PDF

Development of Quantitative Risk Assessment Methodology for the Maritime Transportation Accident of Merchant Ship (상선 운항 사고의 양적 위기평가기법 개발)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.9-19
    • /
    • 2009
  • This paper describes empirical approach methodology for the quantitative risk assessment of maritime transportation accident (MTA) of a merchant ship. The principal aim of this project is to estimate the risk of MTA that could degrade the ship safety by analyzing the underlying factors contributing to MTA based on the IMO's Formal Safety Assessment techniques and, by assessing the probabilistic risk level of MTA based on the quantitative risk assessment methodology. The probabilistic risk level of MTA to Risk Index (RI) composed with Probability Index (PI) and Severity Index (SI) can be estimated from proposed Maritime Transportation Accident Model (MTAM) based on Bayesian Network with Bayesian theorem Then the applicability of the proposed MTAM can be evaluated using the scenario group with 355 core damaged accident history. As evaluation results, the correction rate of estimated PI, $r_{Acc}$ is shown as 82.8%, the over ranged rate of PI variable sensitivity with $S_p{\gg}1.0$ and $S_p{\ll}1.0$ is shown within 10%, the averaged error of estimated SI, $\bar{d_{SI}}$ is shown as 0.0195 and, the correction rate of estimated RI, $r_{Acc}$(%), is shown as 91.8%. These results clearly shown that the proposed accident model and methodology can be use in the practical maritime transportation field.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (유체기기의 표면 금속코팅 적용에 따른 구조건전성 평가)

  • Lee, Han-Seop;Lim, Byung-Chul;Kim, Min-Tae;Lee, Beom-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2019
  • The structural integrity of a surface metal coating was evaluated through numerical results to improve the efficiency and reduce the damage caused by cavitation in ships and marine plants. The goal was to ensure structural strength and performance, even if the thickness of the wing is reduced to reduce the weight of the material and surface coating. Analytical methods were used for four models: a non-coating model, one with the same thickness after coating, one with a thickness reduction of 3% after coating, and one with thickness reduction of 5% after coating. With a thickness reduction of 5% after coating, the stress was increased to 12%, and the safety factor was 0.99%, so the structural integrity was insufficient. However, a better material or a thicker coating could allow a sufficient safety factor to be secured. The structural integrity was improved by the coating, and even when the weight was reduced up to 5%, the structural integrity could be sufficiently secured due to the coating effect.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.