• Title/Summary/Keyword: 손상 검출

Search Result 429, Processing Time 0.036 seconds

The Tire Damage Classification by Pulse Interval Time Density Function of Ultrasonic Wave Envelope on Driving (주행 중 타이어 손상에 의해 발생하는 초음파 포락선 신호의 펄스 간격 시간밀도함수에 의한 손상 분별)

  • Shin, Seong-Geun;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2011
  • The tire damage classification method is researched by periodicity detection of ultrasonic envelope signals to occur at the driving vehicle tire. Because periodic signals is generated by rotations of the damaged tire, it should convert to pulse for using the density function. After time intervals of pulses are represented by the density function, the dominant periodicity is detected. The threshold to make a pulse is calculated by moving average of envelope signals. The result of time density function in case of one damage material, the first peak's time is equals to tire's rotation period, 162ms and 102ms, about the speed of 50km/h and 80km/h. In case of more than one damage material, the sum of each peak's time is equals to tire's rotation period about the speed.

Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI (ESPI를 이용한 복합재료 박리결함의 정량평가)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Ji, Chang-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • Electronic speckle pattern interferometry (ESPI) for quantitative evaluation of delaminations inside of a composite material plate is described. Delaminations caused by the impact on composite materials are difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of the defects made in the composite plates by impact load. Artificial defects are introduced inside of the composite plate for the development of a reliable ESPI inspection technique. Real defects produced by impact tester are inspected and compared with the results of visual inspection which shows a good agreement within 5% error.

Damage Detection in Composite Laminates using Tapping Sound (태핑음을 이용한 복합적층판의 손상검출)

  • Kim, Sung-Joon;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1089-1095
    • /
    • 2009
  • The radiated sound pressure induced by tapping test is obtained by solving the Rayleigh integral equation. For structurally radiated sound, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. In this paper, the delamination model is used to analyze the impact response of delaminated composite laminates. And efficient spring-mass model has been proposed to model hammer shaped impactor. Predicted sound pressure histories are compared with test data. The influence of damage on the sound pressure and impacted force history of laminates were investigated. The results show that both radiated sound pressure and impact force history are strongly influenced by delamination on laminates. As a result, it is shown that the presented sound based tapping method was found to be reliable for detecting the damage in composite laminate.

Damage Location Detection of Shear Building Structures Using Mode Shape (모드형상을 이용한 전단형 건물의 손상 위치 추정)

  • Yoo, Suk Hyeong;Lee, Hong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 2013
  • Damage location and extent could be detected by the inverse analysis on dynamic response of the damaged structure. In general, detection of damage location is possible by the observation of the mode shape difference between undamaged and damaged structure and assessment of stiffness reduction is possible by the observation of the natural frequency difference of them. The study on damage detection by the dynamic response in civil structures is reported enough and in practical use, but in building structures it is reported seldom due to several problems. The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shaking table test on 3 story shear building is performed for the examination of the damage detection method. In shaking table results, as the story stiffness decrease by 25% the 1st mode frequency increase by 12%, and the damage location index represents minus at damaged story.

Assessment of Pipe Wall Loss Using Guided Wave Testing (유도초음파기술을 이용한 배관 감육 평가)

  • Joo, Kyung-Mun;Jin, Seuk-Hong;Moon, Yong-Sig
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Flow accelerated corrosion(FAC) of carbon steel pipes in nuclear power plants has been known as one of the major degradation mechanisms. It could have bad influence on the plant reliability and safety. Also detection of FAC is a significant cost to the nuclear power plant because of the need to remove and replace insulation. Recently, the interest of the guided wave testing(GWT) has grown because it allows long range inspection without removing insulation of the pipe except at the probe position. If GWT can be applied to detection of FAC damages, it will can significantly reduce the cost for the inspection of the pipes. The objective of this study was to determine the capability of GWT to identify location of FAC damages. In this paper, three kinds of techniques were used to measure the amplitude ratio between the first and the second welds at the elbow area of mock-ups that contain real FAC damages. As a result, optimal inspection technique and minimum detectability to detect FAC damages drew a conclusion.

Detection and Evaluation of Microdamages in Composite Materials Using a Thermo-Acoustic Emission Technique (열-음향방출기법을 이용한 복합재료의 미세손상 검출 및 평가)

  • 최낙삼;김영복;이덕보
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Utilizing a thermo-acoustic emission (AE) technique, a study on detection and evaluation of microfractures in cross-ply laminate composites was performed. Fiber breakages and matrix fractures formed by a cryogenic cooling at $-191^{\circ}C$ were observed with ultrasonic C-scan, optical and scanning electron microscopy. Those microfractures were monitored in a non-destructive in-situ state as three different types of thermo-AE signals classified on the basis of Fast-Fourier Transform and Short-Time Fourier Transform. Thus, it was concluded that real-time estimation of microfracture processes being formed during cryogenic cooling could be accomplished by monitoring such different types of thermo-AEs in each time-stage and then by analyzing thermo-AE behaviors for the respective AE types on the basis of the AE signal analysis results obtained during thermal heating and cooling load cycles.

Triggering point detection of power quality event using Fliter Bank (필터뱅크를 이용한 전력품질 사건의 트리거링점 검출)

  • Yun, Jae-Jun;Lee, Jeong-Kyu;Sohn, Sang-Wook;Bae, Hyeon-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2017-2018
    • /
    • 2011
  • 본 논문에서는 QMF로 설계된 기본 필터뱅크를 이용하여 필터뱅크 시스템을 설계하고, 설계된 시스템을 이용하여 전력 외란 신호를 분해한다. 분해된 신호는 적응 예측기로 처리하여 전력 신호 사건의 트리거링점을 검출한다. 적응 필터의 수렴성능을 조절하여 순간적인 외란들을 효과적으로 검출 할 수 있다. 또한, 전력 신호에 포함된 백색잡음을 적응 필터를 이용 제거 할 수 있음을 보인다.

  • PDF