• Title/Summary/Keyword: 손상도 예측

Search Result 839, Processing Time 0.025 seconds

Comparison of Cumulative Damage Models by predicting Fatigue lives of Aircraft Flaperon Joint (손상누적모델의 비교를 통한 플래퍼론 연결부의 피로수명 예측)

  • Park, Tae-Young;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.4
    • /
    • pp.27-34
    • /
    • 2009
  • This paper deals with the lifetime prediction of Aircraft Flaperon Joint made of AISI 4130 steel. Reviews are performed on the published damage models at first. And three different damage models are used for predicting the fatigue life of the structure subjected to variable amplitude fatigue loading. These models require no increase in complexity of use, nor do they require additional material property or mission loading information to achieve the improved accuracy. Finally a comparison among the fatigue results is performed. It is observed that the Miner's rule could predict longer life than other cumulative damage models which take into account loads below the endurance limit.

  • PDF

Burst Prediction of Hoop Winding Composite Case with Metal Liner (금속라이너를 가진 후프 와인딩 복합재 연소관의 파열예측)

  • Han, Houkseop;Kim, Hyung-kun;Lee, Young-won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.78-83
    • /
    • 2015
  • In the composite case, the first ply failure is considered total failure of the case. When the case is constructed by filament winding over a metal liner, the first ply failure does not necessarily mean total failure of the case. In this study, we compared the results through finite element analysis and burst test to predict the burst pressure of the hybrid case (filament-wound composite case with metal liner). Through it predicts the burst pressure of the hybrid case, we can determine the thickness of the metal liner and composite.

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.

Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar (고온손상된 GFRP 보강근의 장기 잔존 계면전단강도 예측)

  • Kim, Min-Cheol;Moon, Do-Young;Kim, Sung-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.108-115
    • /
    • 2014
  • Mechanical properties of GFRP rebars significantly decrease due to high temperature as well as alkalinity of concrete. This study focuses on the long-term reduction of inter-laminar shear strength of pre-damaged GFRP rebars by high temperature. For this investigation, bare GFRP rebar specimens were exposed to $270^{\circ}C$ for 1hour and then immerged in alkali solution for several months and tested in shear. No thermally conditioned specimens were immerged and tested for the comparisons. In results, the reduction of thermally damaged GFRP rebars was greater than that of no thermally damaged ones. Based on the accelerated experimental test data, an polynomial equation is presented for prediction of long-term residual inter-laminar shear strength of GFRP rebars previously damaged by high temperature.

엔진 마모 및 손상의 원인과 처방

  • Hong, Heun;Jeon, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.5-19
    • /
    • 1994
  • 일반적으로 상대운동을 하는 모든 물체에는 마찰이 존재하며 각 경우에 상응하는 적절한 윤활을 하고 있지만 마모(Wear)는 필연적으로 발생된다. 마찰 부위에 형성되는 마모정도에 따라 경 마모(Mild Wear), 평 마모(Normal Wear), 중 마모(Severe Wear) 등이 발생되며 이로인해 윤활유 속에는 다량의 마모 입자들이 존재하게 됨으로써 마모를 가속시키는 요인으로 작용하여 손상(Failure)의 원인이 되기도 한다. 마찰부위의 마모 및 손상은 엔진에서도 마찬가지로 그 수명 및 성능과 관계가 있고 경제적인 문제와 직결되므로 상세한 분석 및 평가가 요망된다. 또한 엔진 설계 및 원활한 작동유지를 위해서 정확한 마모 예측과 그 평가방법이 요구된다. 이를 토대로 엔진 손상을 미연에 방지할 수 있으며, 실제 설계과정에 마모정도를 고려한 가장 최적의 설계인자를 제공할 수 있다고 본다. 본 논문에서는 손상부위에서 발생가능한 여러가지 마모형태를 분류하여 그 특징을 정리하였고, 이를 바탕으로 실제 엔진의 마모 및 손상 등의 평가에 적용할 수 있는 엔진의 부품별 평가자료를 만드는데 주안점을 두었다.

The Variation of Silicon Characteristic with Radiation Damage Effects (Radiation 손상에 기인한 실리콘 특성변화)

  • 장기현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 1978
  • For a long life photovoltaic cell the degradation of the device characteristics with 1 MeV electron radiation must be known so as to be able to predict the life of the cell. Hence, a study was made of radiation damage effects on the bulk properties of the silicon crystal. From the results of the data, it is concluded that there appeared to be a steads rotate damage level reached in f type material.

  • PDF

MELCOR 1.8.2코드를 이용한 CORA-13 실험 분석

  • Heo, Cheol;Kim, Mu-Hwan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.363-368
    • /
    • 1996
  • 경수로형 원자로의 중대사고 진행시 압력용기내 노심의 용융현상 및 재배치과정 등에 대한 MELCOR 코드내 노심손상모델의 예측 및 분석능력을 검증하고자 하였다. 이를 위하여 노심손상 모의실험중 하나인 독일의 KfK에서 실시된 CORA-13 실험을 선정한 후 이 실험을 MELCOR 1.8.2 코드를 이용하여 계산하였다. 실험결과와 계산결과를 비교분석하고 또한, MELCOR 코드에 대한 민감도분석을 수행함으로써 MELCOR 코드내 손상된 노심의 거동에 대한 열수력모델들을 검증하였다.

  • PDF

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.

Fatigue Damage Prediction Using Design Sensitivity Analysis (설계 민감도 해석을 활용한 피로 손상도 예측방법)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • It was previously suggested the design sensitivity analysis based on transmissibility function to identify the most sensitive response location over a small design modification. On the other hand, energy isoclines were used to predict the fatigue damage with acceleration response only. Both of previous studies commonly tackle the engineering problem using the acceleration response alone such that it may be possible to investigate the relationship between sensitivity analysis and accumulated fatigue damage. In this paper, it is suggested the novel method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with a simple notched specimen and the prediction of fatigue damage is conducted using accelerations measured at different locations. It can be concluded that the accuracy of predicted fatigue damage is proportional to the sensitivity index of the responsible location.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kang, Hyeong-Taek;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.351-361
    • /
    • 2006
  • In this study, nonlinear finite element analysis procedures are presented for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel. This paper defines a damage index based on the predicted hysteretic behavior of a circular reinforced concrete bridge pier. Damage indices aim to provide a means of quantifying numerically the damage in circular reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method is applied to circular reinforced concrete bridge piers with confinement steel tested by the authors. The proposed numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several test specimens investigated.