• Title/Summary/Keyword: 속성 클러스터링

Search Result 110, Processing Time 0.036 seconds

A Study on the extraction of vehicle information using LiDAR data (LiDAR 데이터를 이용한 차량정보 추출에 관한 연구)

  • Kwon, Seung-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.350-353
    • /
    • 2009
  • 본 논문에서는 국토모니터링 기술의 한 부분으로서 도로 지역에 대한 효율적인 실시간 교통모니터링을 위해 도로상의 차량 정보를 LiDAR 데이터로부터 취득하는 과정을 실험하였다. 도로영역의 데이터를 추출하기 위해서 좌표 변환된 수치지도와 LiDAR 데이터를 이용하였고, 국지적 임계치 필터링을 사용하여 추출된 도로영역의 데이터를 차량과 도로의 자료로 분리시키는 작업을 수행하였으며, 추출된 차량의 포인트들을 이용하여 차량을 표현할 수 있는 기본 속성값을 추출하였다. 마지막으로, 분리된 차량의 포인트에 대해서 MDC(Minimum Distance Classification) 클러스터링를 이용하여 차량의 종류를 분류하였다. 결과적으로 본 연구를 통하여 차량인식과 차량의 종류에 대한 분류를 수행할 수 있음을 확인하였다.

  • PDF

Clustering Scheme using Memory Restriction for Wireless Sensor Network (무선센서네트워크에서 메모리 속성을 이용한 클러스터링 기법)

  • Choi, Hae-Won;Yoo, Kee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.10-15
    • /
    • 2009
  • Recently, there are tendency that wireless sensor network is one of the important techniques for the future IT industry and thereby application areas in it are getting growing. Researches based on the hierarchical network topology are evaluated in good at energy efficiency in related protocols for wireless sensor network. LEACH is the best well known routing protocol for the hierarchical topology. However, there are problems in the range of message broadcasting, which should be expand into the overall network coverage, in LEACH related protocols. Thereby, this paper proposes a new clustering scheme to solve the co-shared problems in them. The basic idea of our scheme is using the inherent memory restrictions in sensor nodes. The results show that the proposed scheme could support the load balancing by distributing the clusters with a reasonable number of member nodes and thereby the network life time would be extended in about 1.8 times longer than LEACH.

Cluster Feature Selection using Entropy Weighting and SVD (엔트로피 가중치 및 SVD를 이용한 군집 특징 선택)

  • Lee, Young-Seok;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.248-257
    • /
    • 2002
  • Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.

Cluster Based Fuzzy Model Tree Using Node Information (상호 노드 정보를 이용한 클러스터 기반 퍼지 모델트리)

  • Park, Jin-Il;Lee, Dae-Jong;Kim, Yong-Sam;Cho, Young-Im;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Cluster based fuzzy model tree has certain drawbacks to decrease performance of testinB data when over-fitting of training data exists. To reduce the sensitivity of performance due to over-fitting problem, we proposed a modified cluster based fuzzy model tree with node information. To construct model tree, cluster centers are calculated by fuzzy clustering method using all input and output attributes in advance. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. In the prediction step, membership values are calculated by using fuzzy distance between input attributes and all centers that passing the nodes from root to leaf nodes. Finally, data prediction is performed by the weighted average method with the linear models and fuzzy membership values. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional cluster based fuzzy model tree.

Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection (실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘)

  • Hwang, Kyoung-Ae;Oh, Ha-Young;Lim, Ji-Young;Chae, Ki-Joon;Nah, Jung-Chan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.649-658
    • /
    • 2005
  • Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.

Management System for Experimental Data In Remote Measurement Device Using TCP/IP Socket (TCP/IP 소켓을 이용한 원격 측정 장치의 실험 데이터 통합 관리 시스템 개발)

  • Kim, Seon-Yeong;Cho, Hwan-Gue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.397-400
    • /
    • 2010
  • 최근의 과학 실험은 그 규모나 내용에 있어서 점차 대형화되는 동시에 복잡해지고 있다. 이로 인하여 다양한 측정 장비로부터 도출된 실험 결과를 효율적으로 분석, 관리, 종합하는 도구의 필요성이 커지고 있다. 본 논문에서는 원격 측정 장치로부터 서로 다른 포맷의 실험 데이터를 자동 수집한 후 이중 정제한 데이터들만 추출하여 웹에서 시각화하는 실험 데이터 통합 관리 시스템을 제안한다. 먼저 원격 측정 장치의 데이터를 자동으로 수집하기 위해 폴링 서버를 설계하여 장치마다 폴링 에이전트를 도입하였다. 이를 통해 관리자가 각 측정 장치에 직접 접근하지 않고도 데이터를 수집할 수 있다. 폴링으로 확보한 데이터는 파싱을 통해 정제하고, 이들 데이터로 데이터베이스를 구축한다. 정제한 데이터는 시각화하여 사용자가 웹에서 쉽게 파악할 수 있다. 데이터 폴링은 TCP/IP Socket을 통해 수행하므로 보편적으로 사용하는 FTP 방식에 비해 데이터 확보 시 신뢰성을 높일 수 있으며, 폴링 여부 판단 시에는 동기식, 실제 폴링 시에는 비동기식 통신 방법을 사용하여 폴링의 효율을 높였다. 본 시스템을 활용하여 사용자의 임의적인 데이터 접근을 최소화하였고 데이터의 전송, 저장, 관리를 자동화함으로써 편의성을 높였다. 본 시스템을 활용하여 원격 실험 장치로부터 데이터를 확보할 때의 정확성과 폴링 및 파싱 속도를 실험을 통해 측정하였고, 그 결과 폴링 시 100%의 정확도와 정상 포맷의 데이터에 대해서 100%의 파싱 결과를 보임으로써 본 시스템이 원격 장치의 실험 데이터를 통합 관리할 때 적합함을 알 수 있었다. 추후 데이터의 속성에 따라 클러스터링 할 예정이며 클러스터링에 따른 시각화 서비스를 제공할 계획이다.

  • PDF

An Efficient Dynamic Prediction Clustering Algorithm Using Skyline Queries in Sensor Network Environment (센서 네트워크 환경에서 스카이라인 질의를 이용한 효율적인 동적 예측 클러스터링 기법)

  • Cho, Young-Bok;Choi, Jae-Min;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.139-148
    • /
    • 2008
  • The sensor network is applied from the field which is various. The sensor network nodes are exchanged with mobile environment and they construct they select cluster and cluster headers. In this paper, we propose the Dynamic Prediction Clustering Algorithm use to Skyline queries attributes in direction, angel and hop. This algorithm constructs cluster in base mobile sensor node after select cluster header. Propose algorithm is based made cluster header for mobile sensor node. It "Adv" reduced the waste of energy which mobile sensor node is unnecessary. Respects clustering where is efficient according to hop count of sensor node made dynamic cluster. To extend a network life time of 2.4 times to decrease average energy consuming of sensor node. Also maintains dynamic cluster to optimize the within hop count cluster, the average energy specific consumption of node decreased 14%.

  • PDF

Automated Method of Landmark Extraction for Protein 2DE Images based on Multi-dimensional Clustering (다차원 클러스터링 기반의 단백질 2DE 이미지에서의 자동화된 기준점 추출 방법)

  • Shim, Jung-Eun;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.719-728
    • /
    • 2005
  • 2-dimensional electrophoresis(2DE) is a separation technique to identify proteins contained in a sample. However, the image is very sensitive to its experimental conditions as well as the quality of scanning. In order to adjust the possible variation of spots in a particular image, a user should manually annotate landmark spots on each gel image to analyze the spots of different images together. However, this operation is an error-prone and tedious job. This thesis develops an automated method of extracting the landmark spots of an image based on landmark profile. The landmark profile is created by clustering the previously identified landmarks of sample images of the same type. The profile contains the various properties of clusters identified for each landmark. When the landmarks of a new image need to be fount all the candidate spots of each landmark are first identified by examining the properties of its clusters. Subsequently, all the landmark spots of the new image are collectively found by the well-known optimization algorithm $A^*$. The performance of this method is illustrated by various experiments on real 2DE images of mouse's brain-tissues.

Advanced Improvement for Frequent Pattern Mining using Bit-Clustering (비트 클러스터링을 이용한 빈발 패턴 탐사의 성능 개선 방안)

  • Kim, Eui-Chan;Kim, Kye-Hyun;Lee, Chul-Yong;Park, Eun-Ji
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • Data mining extracts interesting knowledge from a large database. Among numerous data mining techniques, research work is primarily concentrated on clustering and association rules. The clustering technique of the active research topics mainly deals with analyzing spatial and attribute data. And, the technique of association rules deals with identifying frequent patterns. There was an advanced apriori algorithm using an existing bit-clustering algorithm. In an effort to identify an alternative algorithm to improve apriori, we investigated FP-Growth and discussed the possibility of adopting bit-clustering as the alternative method to solve the problems with FP-Growth. FP-Growth using bit-clustering demonstrated better performance than the existing method. We used chess data in our experiments. Chess data were used in the pattern mining evaluation. We made a creation of FP-Tree with different minimum support values. In the case of high minimum support values, similar results that the existing techniques demonstrated were obtained. In other cases, however, the performance of the technique proposed in this paper showed better results in comparison with the existing technique. As a result, the technique proposed in this paper was considered to lead to higher performance. In addition, the method to apply bit-clustering to GML data was proposed.

  • PDF

Efficient-Clustering using the Dynamic Sky line Query in Sensor Network Environment (센서 네트워크 환경에서 동적 스카이라인 질의를 이용한 효율적인 클러스터링)

  • Jo, Yeong-Bok;Lee, Sang-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.287-291
    • /
    • 2007
  • 기존 센서네트워크 환경의 노드들이 모바일 환경으로 바뀌면서 클러스터를 구축하고 클러스터 헤더를 선정함에 있어 기존 방법은 정적 노드를 대상으로 구축되어 있기 때문에 이를 동적 노드에 적합한 방법으로 구축하기 위해 기존 연속적인 스카이라인 질의방법을 이용하여 클러스터를 구축하고 클러스터헤더를 선정함으로 센서네트워크의 효율적인 환경을 구축하고자 한다. 기존은 클러스터 헤드 선정을 클러스터를 구축하고 구축된 클러스터 내에서 에너지 잔여량을 비교 하여 가장 에너지가 많은 노드를 헤드로 선정하여 라우팅을 고려하는 기법을 사용하였다. 그러나 센서 노드가 모바일 노드일 경우 위치도 함께 고려되어야 할 속성 중 하나일 것이다. 따라서 이 논문에서는 클러스터 헤더 선정기법에서 기존 방식과 달리 클러스터 헤더를 선정하고 클러스터 헤더를 선정하고 클러스터 헤더를 기준으로 R hop 까지를 하나의 클러스터로 설정하는 효율적인 영역 결정 기법을 제안하였다.

  • PDF