• Title/Summary/Keyword: 소프트 스위칭

Search Result 327, Processing Time 0.02 seconds

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

The Study on the One-stage PFC-flyback Converter using the Soft Switching Technique (소프트 스위칭 기법을 이용한 1단 PFC-flyback 컨버터)

  • Lee, Sang-Hyeok;Hwang, Jung-Goo;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.263-269
    • /
    • 2013
  • The flyback converter has been applied widely in isolated DC/DC power converters because this converters employ a single MOSFET switch. The leakage inductance should be minimized for high efficiency of flyback converter. but in reality, it is very difficult. Namely, The Snubber circuit is essential to recover the leakage inductance stored energy when the switch is turn off. Flyback Converter typically operates in DCM mode and when switch is turn off in hard switching, this hard switching action results in a high power losses and switching stresses. In order to overcome these problems, a novel soft switching flyback converter using resonant snubber circuit is proposed in this paper. The resonant snubber circuit is composed of the transformer leakage inductance and a capacitor. To verify and confirm the proposed resonant snubber circuit, PSIM simulation and hardware prototype are implemented. Simulation and Experimental results indicate that the proposed resonant snubber circuit is effective.

Novel soft switching FB DC-DC converter for reducing conduction losses (도전손실 저감을 위한 새로운 소프트 스위칭 FB DC-DC 컨버터)

  • Kim, E.S.;Joe, K.Y.;Kye, M.H.;Kim, Y.H.;Yoon, B.D.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.388-391
    • /
    • 1996
  • The conventional high frequency phase-shifted full bridge DC-DC converter has a disadavantage that a circulating current flows through transformer and switching devices during the freewheeling interval Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this study provides a novel circulating current free type high frequency soft switching phase-shifted full bridge DC-DC converter which applies the energy recovery snubber(ERS) attached at the secondary side of transformer. The ERS adopted in this study is consisted of three fast recovery diode($Ds_1$, $Ds_2$, $Ds_3$), two resonant capacitor($Cs_1$, $Cs_2$) and a small resonant inductor [(Lr) : It can be ignored because the transformer leakage inductance(Ll) is able to use in stead of inserting the resonant inductor(Lr)]

  • PDF

High Power Buck-boost DC-DC Converter of Soft Switching for Photovoltaic Power Generation (태양광 발전을 위한 대용량 소프트 스위칭 승강압 DC-DC 컨버터)

  • 김영철;김재준;이종근;전중함;곽동걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.117-120
    • /
    • 1996
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional circuit. The result is that the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

The Topology of Novel Soft Switching Boost Rectifier (새로운 소프트 스위칭 승압형 정류기의 토폴로지)

  • Heo, Young-Hwan;Mun, Sang-Pil;Kim, Young-Mun;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.308-314
    • /
    • 2015
  • This paper has proposed a new boost rectifier. Adequate input current was obtained by keeping the duty ratio constant without complicated conventional control methods and the improvement of the waveform was increased. With a decrease of distortion up to 12.9[%], the scope of restriction on harmonics was set to 13.0[%]($3^{td}$ harmonics), 1.1[%]($5^{td}$ harmonics) and 0.6[%]($7^{td}$ harmonics), respectively. Because complicated methods of control are avoided, the circuit configuration is simple and practical. In particular, the said effect turned out to be highly efficient in the low boosting ratio range(boosting ratio$({\alpha})=1.25$). The feasibility of these facts has been proven both theoretically and experimentally.

A New Low Loss Quasi Parallel Resonant DC-Link Inverter with Variable Lossless Zero Voltage Duration (무손실 가변 영전압 구간을 갖는 새로운 저손실 준 병렬공진 직류-링크 인버터)

  • 권경안;김권호;최익;정용채;박민용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.8-18
    • /
    • 1997
  • In this paper, a New Low Loss Quasi-Parallel Resonant DC-Link(NLQPRDCL) Inverter which shows highly improved PWM capability, low loss characteristic and low voltage stress is presented. A method to minimize freewheeling interval, which is able to largely decrease DC-link operation losses and to steadily guarantee soft switching in the wide operation region is also proposed. In addition, lossless control of zero voltage duration of DC-link makes the proposed inverter maintain the advanced PWM capability even under a very low modulation index. Experiment and simulation were performed to verify validity of the proposed inverter topology.

High Gain Soft switching Bi-directional Converter for Eco-friendly Vehicle HDC (친환경 자동차 HDC를 위한 고승압 소프트스위칭 양방향 컨버터)

  • Oh, Se-Cheol;Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.322-329
    • /
    • 2012
  • This paper proposes a non-isolated bidirectional soft-switching converter with high voltage for high step-up/down and high power applications. Compared to the conventional boost converter the proposed converter can achieve approximately doubled voltage gain using the same duty cycle. The voltage ratings of the switch and diode are reduced to half, which result in the use of devices with lower $R_{DS(ON)}$ and on drop leading to reduced conduction losses. Also, voltage ratings of the passive components are reduced, and therefore the total energy volume is reduced to half. Further, the switch is turned on with ZVS in the CCM operation which results in negligible surge caused leading to reduced switching losses. The validity of the proposed converter is proved through a 10kW prototype.

The Topology of Soft Switching Boost Type DC-DC Converter using a Passive Auxiliary Resonant Snubber (패시브 보조 공진 스너버를 이용한 소프트 스위칭 승압형 DC-DC 컨버터의 토폴로지)

  • Sung, Chi-Ho;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • In this paper, we propose a boost DC-DC converter using a modification of the passive auxiliary resonant snubber circuit with a DC-DC converter in a typical active auxiliary resonant snubber-bridge inverter. The proposed boost DC-DC converter is small compared to the DC-DC converter according to the soft-switching scheme that requires a general auxiliary switch by realizing the soft switching operation as a DC-DC converter which does not require an auxiliary switch. It is light-weight, switch the turn-on and turn-off switching loss at the time of the superposition of the voltage and current is extremely small, so small. And the reduction of the surge voltage and current of the switch. In addition, the proposed boost DC-DC converter has a high efficiency over a wide load characteristics change area than conventional hard switching PWM boost converter using an RC snubber loss.

Soft Switching High Frequency Inverter for New Induction Heating (새로운 유도가열용 소프트 스위칭 고주파 인버터)

  • Kim, C.Y.;Mun, S.P.;Kim, M.Y.;Kim, H.J.;Lyu, J.Y.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.119-124
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

Optimal Design of Soft-Switching Cell for High Efficiency and High Power Density for HDC of FCEVs (FCEV용 HDC 고효율 운전을 위한 소프트 스위칭 셀 최적 설계 방안)

  • Kim, So-Young;Noh, Tae-Won;Lee, Jaehyung;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.217-224
    • /
    • 2018
  • In this study, the optimal design methods of soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell electric vehicles (FCEVs) is proposed for high efficiency and high power density. The appropriate soft-switching cell for FCEVs is chosen by analyzing the losses of HDC which adopts soft-switching cell. The proposed optimal design methods for the soft-switching cell are divided into two purposes which are improvement of efficiency and power density. Two kinds of design methods enable to improve fuel efficiency and cost, respectively. The proposed design methods are validated with the experimental results based on the specification and hardware used in actual FCEVs.