최근 시각 관련 측정기 개발에 대한 국내의 관심이 높아지고 있다. 이에 본 논문은 자동 시각 굴절력 곡률계의 전자 부문 소프트웨어와 하드웨어 시스템을 개발하였다. 광학 부문으로부터 나오는 영상 을 이용하여 전자 부문 시스템에서 내부 처리를 거친 후 정확한 시각 측정치를 검사자에게 알려 줄 수 있다면 잘못 측정되는 측정 횟수를 잠재적으로 크게 줄일 수 있을 것이다. 전자 부문 시스템은 소프트웨어와 하드웨어의 두 부분으로 나뉘어 개발되었는데, 소프트웨어 부분은 형태학적 필터링과 그레이 레벨의 신호 강조 기술 등을 이용하여 행해짐으로써, 보다 향상된 굴절력 치수를 도출할 수 있게 개발하였고, 하드웨어 부분은 기존의 시스템들과 동일한 기능을 수행함과 동시에 하드웨어의 변경 없이도 소프트웨어의 변경을 자유롭게 행할 수 있도록 구성하여 개발기간을 크게 줄일 수 있고 나아가 응용 확장 등도 용이하다는 장점을 가지게 되었다. 그리하여 전자 부문 시스템은 정확한 측정값 도출이 어려운 시각 영상에 적용되어 효과적으로 오차를 줄임으로써 보다 효율적인 시각 측정을 가능하게 하였다.
본 논문에서는 혼합형 데이터에 대한 특징 선별 기법의 효율성을 비교하기 위해 특징 필터링과 특징 래핑을 통한 특징 선별 후, 클래스 분류 성능을 측정하였다. 혼합형 데이터는 숫자형 특징과 범주형 특징이 함께 혼합되어 있으므로, 숫자형 특징을 범주형 특징으로 이산화를 하여 단일형 데이터로 변환한 뒤 특징 선별 기법 등을 적용할 수 있다. 본 연구에서는 혼합형 데이터를 전처리하여 단일형 데이터로 변환하고, 널리 활용되는 특징 필터링 기법과 특징 래핑 기법을 통해 클래스 분류 성능을 높일 수 있는 특징 집합을 선별하였다. 선별된 특징 집합을 통한 클래스 분류 성능을 비교한 결과, 특징 필터링에 비해 특징 래핑을 통해 선별한 특징 집합을 활용하여 클래스 분류를 하였을 때 분류 정확도가 높은 것을 확인할 수 있었다.
최근 시각 관련 측정기 개발에 대한 관심이 높아지고 있다. 이에 본 연구는 자동 시각 굴절력 곡률계의 전자 부문에 연동될 굴절력 측정 알고리즘을 개발하였다. 만약 자동화된 시스템이 광학계로부터 나오는 영상을 이용하여 내부 처리를 거친 후 정확한 시각 측정치를 검사자에게 알려줄 수 있다면 잘못 측정되는 측정 횟수를 크게 줄일 수 있을 것이다. 본 연구는 형태학적 필터링(morphological filtering)과 그레이-레벨의 신호 강조(signal enhance) 기술들을 이용하여 자동 시각 굴절력 측정 시스템에 연동될 측정 알고리즘을 개발하였다. 알고리즘에서는 광학계로부터, 도출된 영상으로부터 첫째로 형태학적 필터링 처리를 행하여 처리가 어려운 원 영상을 좀 더 다루기 쉬운 상태로 바꿔준 후 영상에 가해주는 그레이 수준 한계 기법을 통해 신호를 강조함으로써 영상의 그레이 값 분포가 다양함으로 인해서 발생되는 오차를 줄이게 된다. 그리하여 본 전자 부문 소프트웨어는 정확한 측정값 도출이 어려운 시각 영상에 적용되어 효과적으로 오차를 줄임으로써 보다 효율적인 시각 측정을 가능하게 하였다.
MIV(MPEG Immersive Video) 표준은 제한된 3D 공간의 다양한 위치의 뷰(view)들을 효율적으로 압축하여 사용자에게 임의의 위치 및 방향에 대한 6 자유도(6DoF)의 몰입감을 제공한다. MIV 의 참조 소프트웨어인 TMIV(Test Model for Immersive Video)에서는 몰입감을 제공하기 위한 여러 시점의 입력 뷰들 간의 중복 영역을 제거하고 남은 영역들을 패치(patch)로 만들어 패킹(packing)한 아틀라스(atlas)를 생성하고 이를 압축 전송한다. 아틀라스 영상은 일반적인 영상 달리 많은 불연속성을 포함하고 있으며 이는 부호화 효율을 크게 저하시키다 본 논문에서는 아틀라스 영상의 부호화 손실을 줄이기 위한 신경망 기반의 후처리 필터링 기법을 제시한다. 제안기법은 기존의 TMIV 와 비교하여 아틀라스의 복원 화질 향상을 보여준다.
최근 전자상거래에서 대부분의 개인화 된 추천 시스템들은 고객의 취향에 맞는 적절한 상품을 추천하기 위하여 협동적 필터링 기술을 적용하고 있다. 사용자 기반 협동적 필터링은 특정 고객의 선호도와 가장 유사한 선호도를 가지는 고객 그룹의 선호도를 바탕으로 그 고객의 특정 상품에 대한 선호도를 예측하는 기법이다. 그러나 이 방법은 두 고객이 모두 평가를 한 상품이 있어야 하고 오직 두 고객 사이에서만 상관 관계를 구할 수 있으므로 예측의 정확성이 떨어질 가능성이 있다. 아이템 기반 협동적 필터링은 고객이 선호도를 입력한 기존의 상품들과 예측하고자 하는 상품의 상관 관계를 계산하여 선호도를 예측한다. 이 방법에서는 상품들간의 유사도를 계산하기 위하여 두 상품에 대해 선호도를 입력한 고객들의 정보를 사용한다. 그러나 고객들간의 유사도가 전혀 고려되지 않기 때문에 만약 특정 고객과 전혀 선호도가 비슷하지 않은 사용자들의 평가를 기반으로 한다면, 상품들간의 유사도가 정확 하지 않고 아울러 추천 시스템의 예측 능력과 추천 능력이 저하되는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협동적 필터링 기술의 문제점을 보완하고 추천 시스템의 예측 능력을 향상시키기 위하여 유사한 선호도를 가지는 고객들의 평가에 근거하여 상품들간의 유사도를 구하여 특정 상품에 대한 고객의 선호도를 예측하여 추천해 주는 기법을 제안한다. 본 논문에서 제안한 방법의 성능을 기존의 여러 다른 협동적 필터링 방법들과의 비교실험을 통해 평가하였다. 실험 결과 본 논문에서 제안한 방법이 기존의 다른 방법들보다 우수함을 확인할 수 있었다.
현대사회에서는 외모가 내 외적으로 자신을 나타내는 지표이자 상징이며, 사회적 위치나 경제적 상황, 자아정체성을 대변할 수 있다. 또한 경제능력이 향상되고 기존의 성역할 개념의 약화, 사회진출과 인간관계 유지를 위해 남성들도 외모관리에 대한 관심이 높아지기 시작했다. 본 논문은 비교적 화장품에 대한 정보를 잘 알지 못하는 남성들을 대상으로 웹에서 사용자의 나이, 피부톤, 피부타입에 알맞은 화장품을 추천해주는 시스템을 소개한다.
최근 게임 산업의 발달과 게임 방송에 대한 사람들의 관심이 많아짐에 따라 기존 게이머들이 아닌 사람들도 게임에 관심을 많이 보이고 있고, 게임 구매로 이어지고 있다. 하지만, 일반 사용자가 매일 수십 개씩 발매되는 게임 중에 어떤 게임이 자신이 재밌게 즐길 수 있는 게임인지를 판단하기 어렵다. 따라서 게임 판매 플랫폼에서 게임 추천 기능을 갖추고 있지만 그들의 매출 증가를 위한 수단으로 사용되어 그들의 할인 제품이나 신제품에 초점을 맞춰 추천을 해주기 때문에 추천 시스템의 정확도가 낮다. 이러한 이유 때문에 본 논문에서는 사용자에 대한 추천 만족도를 높이고 사용자 경험을 적절히 반영한, 사용자가 남긴 평점을 기반으로 한 게임 추천 시스템을 구성하였다. 시스템에서는 협력 필터링을 이용한 예상 평가 점수 기능과 나이브 베이지안을 이용한 게임 추천 기능을 구현하여 사용자에게 빠르고 정확한 추천을 할 수 있도록 구현하였다. 결과적으로 예상 평점 알고리즘의 경우 2.4초의 처리 속도와 평균 72.1퍼센트의 정확도를 얻었고, 게임 추천 알고리즘의 경우 75.187퍼센트의 정확도를 얻어 사용자에게 빠르고 정확한 추천 결과를 제시 할 수 있었다.
최근 인터넷의 급속한 성장과 더불어 전자메일(E-Mail)은 통신 및 정보, 의사교환의 필수적인 매체로 사용되어지고 있다. 그러나 편리하고 비용이 들지 않는 장점을 이용해 엄청난 양의 스팸 메일이 매일같이 쏟아져 오고, 그 문제의 심각성에 정보통신부는 ‘정보통신망 이용촉진 및 정보보호등에 관한 개정안’이라는 새로운 법률까지 만들었다. 본 논문에서는 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(naive Bayesian classifier)보다 개선된 가중치가 부여된 베이지안 분류자 (weighted Bayesian classifier)와 정보통신부의 개정안을 준수하는 매일을 분류하기 위한 전처리 단계, 그리고 사용자의 행동을 학습하여 보다 정확한 분류를 가능하게 지능형 에이젼트(intelligent agent)가 결합된 형태의 스팸 메일 필터링 시스템(spam mail filtering system)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 넣을 필요 없이 학습한 데이타를 가지고 자동적으로 스팸 메일을 분류할 수가 있는데, 특히 이메일의 특징 추출(feature extraction)을 이용하여 상대적으로 스팸/논스팸 판별에 비중이 큰 단어들에 대해 가중치를 부여함으로서 필터링의 성능향상을 도모하였다. 실험에서는 제안된 시스템의 최적의 성능 평가를 위해서 일반 나이브 베이지안 필터링시의 성능과 이메일 헤더정보, 특정 Tag들 그리고 하이퍼링크 부분에 가중치를 준 베이지안 필터링, 마지막으로 4가지를 결합한 상태의 필터링 성능을 각각 비교 분석하였다. 그 결과 제안하는 시스템이 나이브 베이지안 분류자를 이용한 시스템보다 정확도에서는 5.7% 저조한 성능을 보였으나, 재현율에서 33.3%, F-measure에서 31.2% 우수한 성능향상을 보였다.
출판-구독 모델은 정보 생산자와 사용자를 느슨하게 연결해 주어 다양한 기기들의 연결에 많이 사용되고 있다. 출판-구독 모델에서 네트워크 대역폭을 효과적으로 활용하기 위한 방안으로 조건에 따른 메시지 필터링이 사용되고 있으며, 이에 따른 다양한 연구 결과들이 제안되어왔다. Peer-to-Peer(p2p)기반의 출판-구독 모델은 높은 확장성을 장점으로 다양한 분야에서 널리 사용되고 있지만, p2p 기반특성에 따라 일반적인 필터링 과정이 구독자단에서 이루어지게 되어 구독자에게 추가적인 성능 부담으로 작용하고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 subscription사이의 종속 관계를 가지는 계층적인 subscription 구조와 이를 기반으로 하는 계층적 메시지 전송 방식을 제안한다. 본 제안을 통해 subscription 부모가 존재하는 구독자들은 부모로 부터 필터링 된 메시지를 전송 받게 되어 메시지 수가 증가하더라도 상대적으로 적은 수의 불필요한 메시지를 수신하게 되며, 구독자들 간 트리 구조를 통해 메시지 전송 과정을 출판자에서 구독자로 분산시킴으로써 속도 측면에서의 성능 향상을 얻을 수 있다. 제안 기법의 검증을 위해 제안 기법과 기존 기법들 간의 비교 실험을 진행하였으며, 본 제안 기법에서 메시지 유통량과 전체 throughput의 향상을 확인하였다.
본 논문은 보안 이벤트 위험성에 따른 능동적 대응을 위해서 우선순위 알고리즘을 구현하는 것이며, 이를 기반으로 효율적인 이벤트 처리를 수행하는 이벤트 스케줄러를 구현하고자 한다. CVE나 CVSS 같이 세계적으로 표준을 가지고 있는 기준에 따라, 보안 이벤트를 실행시켰을 때 점수를 매길 수 있는 기준을 마련하고, 정형화 하여 보다 객관적으로 우선순위를 정할 수 있도록 한다. 그래서 이를 바탕으로 보안 이벤트 데이터베이스를 구축하고, 이를 이용하여 스케줄링을 할 수 있도록 한다. 또한 보안 이벤트 스케줄링 우선순위 알고리즘을 우리나라 보안 이벤트 실정에 맞게 개발하고 적용함으로써 국내 기관 및 기업의 정보보호에 대한 신뢰성 확보와 산업 발전에 기여하게 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.