We propose a novel metric for quantitatively comparing different clustered results generated from software clustering algorithms. A quantitative evaluation of software clustering helps understanding of architectural changes of software. The concept of split, which has been used for analysis of genetic characters in bio-informatics, is applied in the analysis of software architecture.
This article suggests applicability to community detection algorithm from module recovering process of software architecture through compare to software clustering metric and community dectection metric. in addition to, analyze mutual relation and difference between separated module and measurement value of typical clustering algorithms and community detection algorithms. and then only sugeested several kinds basis that community detection algorithm can use to recovering module view of software architecture and, by so comparing measurement value of existing clustering metric and community algorithms, this article suggested correlation of two result data.
Proceedings of the Korean Information Science Society Conference
/
2008.06b
/
pp.337-341
/
2008
갈수록 복잡해지는 내장형 시스템을 개발함에 있어서 소프트웨어 개발의 중요성은 날로 커지고 있다. 기존 연구에서 소프트웨어 개발 효율을 높이기 위해 소프트웨어의 재사용 가능성을 높이고 병렬성 명세를 용이하게 하고자 중간단계코드(CIC)를 정의하였다. 이 중간단계 코드는 각 태스크의 순수 알고리즘을 기술하는 C형태의 태스크 코드와 그 외의 정보를 포함하는 XML형태의 아키텍쳐 정보 파일로 구성된다. 이 CIC는 사용자가 직접 기술할 수 있고 각종 모델로부터 자동 생성할 수도 있다. 이 논문에서는 후자에 초점을 두고 데이터 플로우 모델에 사용된 블록들을 클러스터링하여 태스크 코드를 생성하는 기법을 제안하였다. 이것을 위해 블록 클러스터링 알고리즘은 주어진 클러스터의 크기로 블록이 묶일 때까지 블록의 수행시간 정보를 고려하여 함수 병렬성을 최대한 보존하며 블록들을 묶어나간다. H.263 코덱 예제를 이용한 실험을 통해 제안하는 방법이 다양한 클러스터의 크기 조건에 대해서 다양한 클러스터링 결과를 제공함을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.901-903
/
2005
본 논문에서는 절차 중심 소프트웨어를 객체 지향 소프트웨어로 재/역공학기 위한 다단계 절차 중 객체 추출 단계에서 선 클러스터링을 통해 불필요한 정제 결합단계를 축소하고, 영역 전문가의 선택으로 영역모델링에 가장 가까운 객체 후보군을 제시하는 알고리즘을 제안하고자 한다. 기존의 연구에서는 영역 모델링과 다중 객체 후보군과의 유사도를 측정하여 영역 전문가에게 최적합 후보를 선택할 수 있는 측정 결과를 제시하였다. 하지만 영역 전문가가 제시하는 영역 모델링이 존재한다면 정제 결합단계이전에 최대한의 선 클러스터링을 통해서 영역 모델링과 가장 유사한 통합 객체를 제시할 수 있고, 정제 결합 단계를 선 클러스터링을 통해서 축소할 수 있으며 이를 통해서 객체 후보군과 영역모델링의 유사도를 향상 시키며 클러스터링에 따른 시간과 공간을 절약할 수 있다. 따라서 본 논문에서는 영역 모델링과 사용자의 함수, 전역변수의 선택을 통해 영역 모델링에 가장 유사한 객체 후보군을 찾는 선 클러스터링 알고리즘 제안 하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.371-373
/
2023
factor 들이 많은 데이터의 군집화는 어려움을 요한다. K-means 클러스터링을 사용하여 군집화를 할 때, 각 데이터들이 가진 factor 의 개수가 상이한 경우 비슷한 성향을 가진 데이터임에도 불구하고 클러스터링이 적합하게 되지 않는 현상이 발생한다. 이러한 문제점을 해결하기 위해 최적의 군집화 개수를 결정하는 실루엣 기반 방법을 제안하고 제안기법의 성능을 평가한다.
In this study, we propose a novel technique of software clustering to recover the software module-view by using the dependency and author entropy of modules. The proposed method first performs clustering of modules based on structural and logical dependencies, then it migrates selected modules from the clustered result by utilizing the author entropy of each module. In order to evaluate the proposed method, we calculated the MoJoFM values of the recovery result by applying the method to open-source projects among which ground-truth decompositions are well-known. Compared to the MoJoFM values of previously studied techniques, we demonstrated the effectiveness of the proposed method.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.703-706
/
2002
최근 대부분의 정보시스템은 웹기반 정보시스템으로 이주하고 있으며 이의 개발과 유지보수시에 "웹 위기" 현상이 발생하고 있다. 이를 해결하기 위한 웹엔지니어링 기술 중 웹기반 정보시스템의 내부시스템을 재구성하기 위한 방법이 필요하다. 따라서 본 논문에서는 웹기반 정보시스템의 내부시스템을 재구성하기 위한 폼 클러스터링 방법을 제시한다. 폼 클러스터링 방법은 기존의 소프트웨어 분할 및 태스크 클러스터링 기술의 개념을 적용하여 웹 기능구조를 실제 하드웨어에 할당하기 위한 최적의 응답시간 성능을 갖는 웹 소프트웨어 구조를 생성하는 방법이다. 본 논문에서 제시하는 폼 클러스터링 방법은 웹기반 정보시스템의 내부시스템을 신규개발 및 유지보수시에 적용할 수 있다. 적용할 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.485-487
/
2023
최근 코로나 19 방역지침 해제로 인한 대면적인 활동이 많아지면서 사람에 대한 서비스 제공이 중요한 이슈가 되었다. 하지만 사람들이 밀집되어있는 곳에서는 서비스가 원할하게 이루어지지 않는 경우가 대부분이다. 본 논문에서는 객체인식 알고리즘 기술인 Yolo와 OpenCv를 통해 카메라로 영상 속의 사람들을 인식하여 군집화 기술인 K-means 클러스터링을 이용해서 사람에 대한 군집화를 진행후 우선순위를 선정하고 좌표를 지정하여서 로봇이 군집의 좌표로 이동하여서 사람들에게 직접 접근하여 서비스를 제공할 수 있도록 하였다.
본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 칼라영상의 한 픽셀은 칼라정보(R.G.B)와 위치정보(x.y)를 가진다. 대개의 칼라공간에서의 클러스터링방법은 픽셀을 (R,G,B)공간으로 변환후 (R,G,B)공간상의 분포만을 이용하지만 여기서는(R,G,B)와 (x.y)모두를 사용하여 클러스터링함으로 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 중력 클러스터링(gravitational clustering)을 사용하였다. 이 방법은 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. 중력 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법(K-means)에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.
KIPS Transactions on Software and Data Engineering
/
v.12
no.1
/
pp.1-18
/
2023
Similar software is often developed with the Clone-And-Own (CAO) approach that copies and modifies existing artifacts. The CAO approach is considered as a bad practice because it makes maintenance difficult as the number of cloned products increases. Software product line engineering is a methodology that can solve the issue of the CAO approach by developing a product family through systematic reuse. Migrating product families that have been developed with the CAO approach to the product line engineering begins with finding, integrating, and building them as reusable assets. However, cloning occurs at various levels from directories to code lines, and their structures can be changed. This makes it difficult to build product line code base simply by finding clones. Successful migration thus requires unifying the source code's file path, class name, and method signature. This paper proposes a clustering method that identifies a set of similar codes scattered across product variants and some of their method full paths are different, so path unification is necessary. In order to show the effectiveness of the proposed method, we conducted an experiment using the Apo Games product line, which has evolved with the CAO approach. As a result, the average precision of clustering performed without preprocessing was 0.91 and the number of identified common clusters was 0, whereas our method showed 0.98 and 15 respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.