Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.345-348
/
2005
소프트웨어 결함은 그것을 찾아내는 것도 힘들지만 정확한 해법을 찾는 것도 쉽지 않을 뿐더러, 또 테스트자의 능력 여하에 따라 수정중에 새로운 결함이 도입될 수도 있기 때문에 검출된 결함이 완벽하게 제거되기는 쉽지 않다. 따라서, 결함 제거 효율은 개발중인 소프트웨어의 신뢰도 성장이나 테스트 및 수정비용에 영향을 크게 미친다. 이는 소프트웨어 개발의 모든 과정에서 매우 유용한 척도로서 개발자가 디버깅 효율을 평가하는데 크게 도움이 될 뿐더러, 추가로 소요되는 작업량을 예측할 수 있게 해준다. 그러므로 개발 소프트웨어의 신뢰도와 비용면에서 불완전 디버깅의 영향을 연구하는 것은 매우 중요하다고 할 수 있으며, 이는 최적 인도 시각이나 운영 예산에도 영향을 줄 수 있다. 본 논문에서는 개발중인 소프트웨어를 대상으로 하여 디버깅이 완전하지 않으며, 이 때문에 디버깅 중 새로운 결함이 도입될 수도 있다는 제안하에 보편적으로 사용되는 신뢰도 모델을 대상으로 불완전 디버깅 범위로까지 소프트웨어의 신뢰도와 비용 문제를 확장하여 연구한다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.3
/
pp.27-35
/
1999
소프트웨어의 결함 검출율(FER : Fault Exposure Ratio)은 소프트웨어에 대한 시험의 효율성과 고장 당결함 발생율(per fault hazard rate)을 제어하는데 매우 중요한 요소이다. 특히 시험이 불규칙적으로 수행될 때 고장 발견은 더욱 어려워진다. 시험이 종료되는 단계에서 소프트웨어 결함 검출율이 낮은 경우는 시험의 유효성을 기대하기 어렵기 때문이다 일반적으로 결함 검출율(K)이 점차 높아지는 시험 종료 단계에서는 Random Test 보다는 강도 높은 실 시험이 수행되기 때문이다. 이런 가정하에 본 논문에서는 TDX 교환 소프트웨어의 결함 검출율을 추정하여 이를 기반으로 한 ATM 소프트웨어의 결함 검출율을 예측하고 또한 소프트웨어 신뢰도가 향상되어 가는 과정에 대해 논했다..
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.7-9
/
2002
최근 소프트웨어 사용자의 요구사항이 빠르게 변화하고 있으며, 그에 따른 소프트웨어 규모도 커지고 있다. 소프트웨어 개발 업체들은 적은 개발비용으로 사용자의 기대를 만족시키는 고품질의 소프트웨어를 단기간에 출시하고자 많은 노력을 기울이고 있으며, 소프트웨어 제품과 프로세스들에 대해서 제언하고 예측할 수 있는 능력을 확보하고자 노력하고 있다. SPICE 모델에 따른 소프트웨어 프로세스 개선은 소프트웨어 개발 업체의 개발 및 관리 문제점을 해결하는데 사용되고 있으나 개선을 위한 지침의 부족으로 개선 실행에 어려움을 보이고 있다. 이어 본 논문에서는 SPICE 모델에 따른 소프트웨어 프로세스 심사 결과의 개선 항목을 잠재적인 결함으로 간주하고, GQM 방법론에 의해서 소프트웨어 프로세스 개선을 수행함으로써 조직의 비전과 목표 프로세스 능력을 달성할 수 있도록 제안한다. 또한, 결함 제거를 위한 트리거를 구축하고, 개선 사항과 타 프로세스와의 연관성을 분석하여 효과적인 프로세스 개선을 유도하고자 한다.
In this paper, we propose a method for estimation software quality in terms of software test data, and it is necessary to predict the period of time required for software test evaluation. We need a model to understand of estimation of software quality. In this paper, we propose a model to estimate the number of days for software test using the data obtained through the tester's sex, and present a model for analysing the number of errors according to six quality characteristics by software type.
이 글에서는 정밀유도포탄의 국내외 개발 현황과 특징에 대하여 분석하고, 정밀유도포탄을 개발하기 위해 소프트웨어 관점에서의 주요 설계 요소와 설계 방법에 대하여 기술하였다. 소프트웨어적으로 해결해야 되는 문제로 초기자세 예측과 바람 예측을 제기하였으며, 칼만필터를 활용하여 각 알고리즘을 설계하는 방안에 대하여 제시하고 있다. 뿐만 아니라 정밀한 결과를 위하여 GPS/INS 통합 알고리즘과 유도명령을 구성하는 방안에 대하여 기술하였다.
전통적으로 소프트웨어 프로젝트는 납기지연, 예산초과, 높은 결함율 등으로 타 산업분야의 프로젝트에 비해 매우 높은 실패율을 기록하고 있는 것으로 알려져 있다. 이 같은 소프트웨어 프로젝트의 실패원인에 대한 많은 연구결과는 소프트웨어가 갖고 있는 범위와 요구사항 정의의 어려움, 비가시성으로 인한 초기견적의 부정확성, 역시 가시성의 부족으로 진행상황파악의 어려움에 따른 진척관리의 애로, 더욱 큰 문제는 변경의 용이성과 변경에 대한 추적의 어려움 등을 지적하고 있다. 실패한 프로젝트들의 내용을 보면 대부분 계획의 부정확성이나 위험에 대한 대처의 부족 또는 진행 중 발생하는 변경에 대한 통제의 실패에서 찾아 볼 수 있다. 정확한 예측과 위험 예방 그리고 효과적인 통제대책이 소프트웨어 프로젝트를 성공으로 이끄는 3두 마차라는 지적이다. 정확한 예측의 핵은 프로젝트 산출물인 제품에 대한 정확한 규모측정에 있고, 위험 예방은 복잡도가 높거나 불확실성이 높은 컴포넌트의 자원소요에 대한 예측과 이에 대한 준비의 소홀에서 찾을 수 있으며, 효과적인 통제대책은 프로젝트 관리 프레임워크가 튼튼하지 못하거나 이의 준수를 위한 노력의 결핍에서 찾을 수 있을 것이다. 본 논문에서는 이 3두 마차 중 가장 근간이 되고 시발점이 되는 제품의 규모에 대한 예측에 초점을 맞추어 규모측정에 가장 합리적이고 객관적이며 실용성이 높다고 현재 국제적으로 높은 평가를 받고 있는 기능점수를 프로젝트 관리에 어떻게 활용해야 프로젝트를 성공시킬 수 있을 지의 방법에 대한 검토 결과를 제시고자 한다.
Software changes for various kinds of reasons and they increase maintenance cost. Software metrics, as quantitative values about attributes of software, have been adopted for predicting maintenance cost and fault-proneness. This paper proposes relationship between some typical object-oriented metrics and software changes in industrial settings. We used seven metrics which are concerned with size, complexity coupling, inheritance and polymorphism, and collected data about the number of changes during the development of an Information system on .NET platform. Based on them, this paper proposes a model for predicting the number of changes from the object-oriented metrics using multiple regression analysis technique.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.345-348
/
2005
소프트웨어 개발 후 인도 전 테스트 단계중에 발생되는 테스트 노력 소요량을 고려한 소프트웨어 신뢰도 성장 모델을 제시하여 테스트 노력소요량 동태를 시간함수인 로지스틱 곡선으로 설명한다. 테스트 단계중에 소요되는 테스트노력의 양에 대한 결함 검출비를 현재의 결함 내용에 비례하는 것으로 가정하여 소프트웨어 신뢰도 성장 모델을 비동차 포아송 프로세스(NHPP)로 공식화하여, 이 모델을 이용하여 소프트웨어 신뢰도 척도에 대한 데이터 분석기법을 개발한다. 그간 여러 문헌에서 소프트웨어 신뢰도 향상 모델을 연구할 때 소프트웨어 테스트 중에 소요되는 테스트노력의 양으로서 지수함수 곡선, 레일레이 곡선, 웨이불 곡선을 사용해 왔다. 그러나, 모든 소프트웨어 개발 환경에서 지금까지 제시된 그러한 곡선중 하나에 의해서 테스트노력 소요 곡선을 표현하는 것은 적절하지 못하다는 것이 밝혀지고 있다. 본 논문에서는 로지스틱 테스트노력 곡선이 소프트웨어의 개발/테스트 노력곡선으로 적절하게 표현될 수 있다는 것과 실제 데이터를 근거로 하여 적용하여서 예측성이 매우 좋은 능력을 가지고 있다는 것을 보이고자 한다.
The time to market and productivity of embedded system needs a quality measurement process management of embedded software. But, defect management without preemptive analysis or prediction is not useful for quality measurement process management. This subject is focused on the defect that is one of the most important attributes of software measure in the process. Defining of defect attribute and quality measurement process management is according to understanding of embedded sw characteristics and defect data. So, this study contributes to propose the good method of the quantitative based on defect management in the test phase of sw lifecycle.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.4
/
pp.111-117
/
2022
Many studies have been conducted on software fault prediction models for decades, and the models using machine learning techniques showed the best performance. Deep learning techniques have become the most popular in the field of machine learning, but few studies have used them as classifiers for fault prediction models. Some studies have used deep learning to obtain semantic information from the model input source code or syntactic data. In this paper, we produced several models by changing the model structure and hyperparameters using MLP with three or more hidden layers. As a result of the model evaluation experiment, the MLP-based deep learning models showed similar performance to the existing models in terms of Accuracy, but significantly better in AUC. It also outperformed another deep learning model, the CNN model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.