소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 강조하며, 교차 검증, 특성 스케일링, 비교 분석 등을 포함한 철저한 방법론을 통해 수행되었다.
소프트웨어 제품의 품질을 보장하기 위해서는 제품을 개발하는 단계에 미리 결함율을 예측하여 원하는 수준의 품질을 확보하는 것이 중요하다. 결함은 사용자의 요구사항이 제품으로 구현되고 기능에 대한 테스트가 수행되는 단계에 가장 객관적이며 정량적으로 관리될 수 있다. 따라서 본 논문에서는 통합테스트에 대한 계획을 수립하는 단계에 제품에 대한 결함율을 미리 예측하여 제품 결함율이 조직의 관리범위에 들어올 수 있도록 통제하는 결함예측모델을 제안한다. 조직의 제품 결함율 베이스라인을 설정하고 통합테스트 결함율에 영향을 미치는 변수들과의 회귀분석을 통해 통합테스트 결함예측모형을 구축한다. 또한 제품 결함율에 영향을 미치는 변수들과의 회귀분석을 통해 제품 결함예측모형을 구축하고 결함예측모형을 활용해 제품 결함율을 분석 및 통제한다. 본 논문에서 제안한 결함예측모델은 실제 프로젝트에 적용하여 실효성을 검증하였으며 제품이 완성되기 전에 결함율을 예측하여 통제할 수 있게 함으로써 소프트웨어 품질을 향상한다.
소프트웨어 프로젝트를 진행할 때, 소프트웨어 개발에 투입할 노력의 정확한 추정과 더불어 소프트웨어 생명주기 단계별 적정한 개발노력을 투입하는 것은 프로젝트 성공을 위해 필요한 요소 중 하나이다. 조직의 과거 데이터를 활용한 기존의 개발노력 분배 방식은 단계별로 발생되는 결함의 양에 따라 개발노력의 투입량 변동이 발생될 수 있다. 본 연구에서는 CMMI 조직 프로세스성과(Organization Process Performance) 프로세스 기반의 결함 예측을 이용한 개발노력 분배 성과모델을 제시하고, 제시한 성과모델의 예측값과 프로젝트 수행 결과 값의 비교를 통해서 제시한 성과모델의 유효성 및 결함과 개발노력 분배의 연관성에 대해서 검증 하고자 한다.
본 논문에서는 NHPP 에 근거한 N 버전 프로그래밍 시스템의 SRGM 을 제안한다. 비록 많은 연구 논문에서 NVP, 시스템 신뢰도에 대해서 연구노력을 기울여 왔지만 그들 대부분이 안정된 신뢰도에 대해서만 고려해 왔다. 테스트 및 디버깅 동안 결함이 발견되면 디버깅 노력은 결함을 제거하는데 집중된다. 소프트웨어가 너무 복잡하므로 이러한 결함을 성공적으로 제거한다는 것이 쉽지 않으며, 또 다른 새로운 결함이 소프트웨어에 도입될 수도 있다. 일반화된 NHPP 모델을 NVP 시스템에 적용하여 새로운 NVP-SRGM이 수립된다. 제어시스템에 대한 단순화된 소프트웨어 제어에서 이러한 새로운 소프트웨어 신뢰도 모델을 어떻게 적용하는지를 보여주고 있다. 소프트웨어 신뢰도평가에 s 신뢰도 구간을 준비하였다. 이 소프트웨어 신뢰도 모텔은 신뢰도를 평가하는데 쓰일 수가 있어서 NVP 시스템의 성능을 예측하는데 쓰일 수 있다. 일반적인 산업사회에 적용하여 상용화하기 위해서는 내결함 소프트웨어의 신뢰도를 정량화하기 위해 제안된 NVP-SRGM을 충분히 인증하는데 좀더 적용이 필요하다. NVP 신뢰도 성장 모델링을 하는 이러한 종류의 첫 모델로서 제안된 NVP-SRGM은 독립 신뢰도 모델의 단점을 극복하는데 쓰일 수 있다. 이는 독립적인 모델보다 더욱 더 정확하게 시스템 신뢰도를 예측할 수 있으며, 언제 테스트를 중단해야 하는가를 결정하는 데에도 쓰일 수 있으며, 이는 NVP 시스템 개발 수명주기 단계를 테스트 및 디버깅함에 있어서 핵심 질문사항이다.
소프트웨어 개발 인력 프로파일에 대한 현존하는 모든 통계적 모델들은 소프트웨어 사용과 개발 프로세스의 가정에 기반을 두고 있어 일반적으로 적용 가능한 추정과 예측 모델이 없는 실정이다. 본 논문은 예측필터를 적용하여 소프트웨어 개발 투입 인력 프로파일을 예측하였다. 먼저 소프트웨어 개발 인력분포를 살펴보고, 예측필터를 적용하기 위해 모델의 입력 -출력, 모수를 결정하는 방법을 제시하였다. 이어서 제안된 모델의 유용성은 실제 개발된 소프트웨어 프로젝트로부터 획득된 데이터 분석으로 경험적으로 검증되었다. 평균 상대오차와 Pred(0.25)에 기반하여 제안된 예측필터는 잘 알려진 통계적 추정 모델들과 비교되었다. 검증 결과 예측필터는 단순한 구조를 갖고 있으면서도 소프트웨어 인력분포를 적절히 표현하는 결과를 보였다.
최근 소프트웨어 결함 예측 연구는 교차 프로젝트 간의 결함 예측뿐만 아니라 교차 버전 프로젝트 간의 결함 예측 또한 이루어지고 있다. 종래의 교차 버전 결함 예측 연구들은 WP(Within-Project)로 가정한다. 하지만, CV(Cross-Version) 환경에서는 프로젝트 버전 간의 분포 차이의 중요성을 고려한 연구들이 없다. 본 연구에서는 다른 버전 간의 분포 차이까지 고려하는 자동화된 베이지안 최적화 프레임워크를 제안한다. 이를 통해 분포차이에 따라 전이 학습(Transfer Learning) 수행 여부를 자동으로 선택하여 준다. 해당 프레임워크는 버전 간의 분포 차이, 전이 학습과 분류기(Classifier)의 하이퍼파라미터를 최적화하는 기법이다. 실험을 통해 전이 학습 수행 여부를 분포차 기준으로 자동으로 선택하는 방법이 효과적이라는 것을 알 수 있다. 그리고 최적화를 이용하는 것이 성능 향상에 효과가 있으며 이러한 결과 소프트웨어 인스펙션 노력을 감소할 수 있다는 것을 확인할 수 있다. 이를 통해 교차 버전 프로젝트 환경에서 신규 버전 프로젝트에 대하여 효과적인 품질 보증 활동 수행을 지원할 것으로 기대된다.
본 논문은 주어진 고장 데이타로부터 소프트웨어의 신뢰성 예측력 향상을 위해 뉴로-퍼지 시스템 연구를 수행하였다. 다른 소프트웨어로부터 수집된 10개의 고장 수 데이타와 4개의 고장시간 데이타에 대해 규칙의 수를 변경시키면서 다음 단계 예측을 실험하였다. 뉴로-퍼지 시스템의 예측력을 보이기 위해 다음 단계 예측에 대해 비교하였다. 실험 결과 뉴로-퍼지 시스템은 다양한 소프트웨어에 잘 적용되었다. 또한 널리 사용되고 있는 신경망과 통계적 소프트웨어 신뢰성 성장 모델의 예측력과 견줄 정도의 좋은 결과를 얻었다.
4차 산업혁명 시대에 우리는 소프트웨어 홍수 속에 살고 있다. 그러나, 소프트웨어의 증가는 필연적으로 소프트웨어 취약점 증가로 이어지고 있어 소프트웨어 취약점을 탐지 및 제거하는 작업이 중요하게 되었다. 현재까지 소프트웨어 취약 여부를 예측하는 연구가 진행되었지만, 탐지 시간이 오래 걸리거나, 예측 정확도가 높지 않았다. 따라서 본 논문에서는 기계학습 알고리즘을 이용하여 소프트웨어의 취약 여부를 효율적으로 예측하는 방법을 설명하며, 다양한 기계학습 알고리즘을 이용한 실험 결과를 비교한다. 실험 결과 k-Nearest Neighbors 예측 모델이 가장 높은 예측률을 보였다.
소프트웨어 결함 예측 연구들의 대부분은 입력 개체의 결함 유무를 예측하는 이진 분류 모델들에 관한 것들이다. 하지만 모든 결함들이 같은 심각도를 갖지는 않으므로 예측 모델이 입력 개체의 결함경향성을 몇 개의 심각도 범주로 분류할 수 있다면 훨씬 유용하게 사용될 수 있다. 본 논문에서는 전통적인 복잡도와 크기 메트릭들을 입력으로 하는 심각도 기반 결함 예측 모델을 제안하였다. 학습 알고리즘은 많이 사용되는 네 개의 기계학습 기법들을 사용하였으며, 모델 구조는 삼진 분류 모델로 하였다. 모델 성능 평가를 위해 실험 데이터는 두 개의 NASA 공개 데이터 집합을 사용하였고, 평가 측정치는 Accuracy를 이용하였다. 평가 실험 결과는 역전파 신경망 모델이 두 데이터 집합에 대해 각각 81%와 88% 정도의 Accuracy 값으로 가장 좋은 성능을 보였다.
시험기간 동안 수집된 고장 데이터를 이용하여 소프트웨어 신뢰도를 예측할 수 있는 모델은 많으나 이 예측 방법은 정확하지 못하며, 특히 초기 시험 단계에서는 더욱 더 부정확하여 예측자들은 이러한 소프트웨어 신뢰도 모델의 적용을 주저한다. 한편 소프트웨어 신뢰도 성장 모델은 유사 프로젝트나 개발 초기에 얻은 정보를 가지고는 신뢰도 예측 데이터로 활용이 불가능하다. 예를 들면 최근의 소프트웨어 시스템들은 항시 유사 프로젝트들로부터 활용이 가능한 일련의 정보와 동일 응용 영역의 초기 또는 최신의 정보들이 변경, 개선되기 때문이다. 본 논문에서는 유사한 프로젝트로부터 얻은 공통의 데이터들을 활용하여 소프트웨어 신뢰도를 예측할 수 있는 방법들을 제안한다. 특히 일반적으로 사용되고 있는 Goel-Okumoto(G-O) 모델이나 고장 검출률을 이용하거나 시험 데이터를 활용하는 방법 등을 이용하여 모델 파라미터를 추정하고 실제 프로젝트 수행중에 얻어진 각종 결과를 토대로 해서 Numerical Algorithm이 아닌 통계적인 관점의 분석 결과와 MLE(Maximum Likelihood Estimation) 추정 방법 등을 동원하여 초기에 우리 프로젝트에 맞는 정확한 소프트웨어 신뢰도 평가 방법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.