• Title/Summary/Keyword: 소음 방사

Search Result 496, Processing Time 0.022 seconds

Shape Design Sensitivity Analysis For The Radiated Noise From Thin body (박판구조물의 방사소음에 대한 형상 설계민감도 해석)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.90-95
    • /
    • 2001
  • A continuum-based shape design sensitivity analysis (DSA) method is presented for the acoustic radiation from thin body. The normal derivative integral formulation is employed as an analysis formulation and differentiated directly by using material derivative to get the acoustic shape design sensitivity. In the acoustic sensitivity formulation, derivative coefficients of the structural normal velocities on the surface are required as the input. Thus, the shape design sensitivities of structural velocities on the surface with respect to the shape change are also calculated with continuum approach. A simple disk is considered as a numerical example to validate the accuracy and efficiency of the analytical shape design sensitivity equations derived in this research. This research should be very helpful to design an application involving thin body and to change its acoustic characteristics.

  • PDF

Identification of Nonlinear Parameters of Electrodynamic Direct-Radiator Loudspeaker with Output Noise (출력 소음을 고려한 직접방사형 라우드스피커의 비선형 매개변수 규명)

  • 박석태;홍석윤
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.887-899
    • /
    • 1998
  • It has been resulted that Lagrange multiplier method with statistical approach was superior to traditional harmonic balance method in identifying the nonlinear loudspeaker parameters when output signals were contaminated with Gaussian random noise. We have known that the displacement-dependent characteristic values of nonlinear parameters identified by traditional harmonic balance method were estimated less than original values by the increase of output noise and the stiffness coefficients were very sensitive to output noise. Also, by the sensitivity analysis we have verified that the harmonic distortions in acoustic radiation was mainly due to nonlinearity of force factor caused by uneven magnetic fields and that reducing the nonlinearity of damping coefficients were very effective for improving second harmonic distrotion of acoustic radiation.

  • PDF

Noise Radiation Analysis of the Cooling Fan in a Heavy Equipment (중장비 팬의 엔진룸을 통한 소음방사 해석)

  • 정기훈;전완호;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.954-960
    • /
    • 2001
  • Axial fans are widely used in heavy machines due to their ability to produce high cooling of engines. At the same time. the noise generated by these fans causes or serious problems. This work is concerned with the low noise technique of discrete. The prediction model. which allowed the calculation of acoustic pressure at the frequency and it's harmonics, has been developed by Farrasat and the Helmholtz-Kir. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the fan that is located in a engine room. To calculate the unsteady resultant force over blade. Time-Marching Free-Wake Method are used. The fan noise of fan sys unsymmetric engine-room is predicted. In this paper. the discussion is confined to and discrete noise of axial fan and front Part of engine room in heavy equipments.

  • PDF

Sound visualization and source identification by using planar acoustic holography. (평면 음향 홀로그래피를 이용한 음장의 가시화 및 음원탐지)

  • Kwon Hyu-Sang;Suh Jae-Gap;Chung Wan-Sup
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.289-292
    • /
    • 1999
  • 다수의 마이크로폰 어레이를 사용하여 소음원에서 방사하는 음장을 예측, 가시화하고 소음원의 시, 공간적 특성을 파악하기 위하여 음향 홀로그래피 방법에 대한 연구를 수행하였다. 음향 홀로그래피 방법은 실험적으로 소음원의 특성을 규명할 수 있기 때문에 많은 연구가 활발히 진행되고 있지만, 많은 개수의 마이크로폰과 신호수집장치 등이 필요하기 때문에 그 사용에 많은 제약이 있어 왔다. 음향 홀로그래피 방법중에서 대표적인 평면 음향 홀로그래피 방법을 중심으로 마이크로폰의 개수, 간격등과 같은 측정조건과 함께 마이크로폰을 스캐닝하는 방법둥에 대한 해석을 통하여 장, 단점 및 제한성을 논하였다. 또한 이러한 측정방법에서 나타나는 오차요인을 해석하고 이를 보정하는 방법에 대한 설명과 함께 실험을 통하여 이를 확인해 보았다.

  • PDF

Measurement of the Source Impedance by FLM (FLM에 의한 음원의 임피던스 측정)

  • 정갑철;윤제원;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.217-222
    • /
    • 1995
  • 소음기의 음향 성능을 평가하기 위해서는 음원의 임피던스를 알아야 한다. 음원의 임피던스를 구하기 위한 많은 연구가 행해졌고 정재파법, 음향전달함수법, Two Load Method(TLM), Four Load Method(FLM)등이 여러가지 방법이 개발되었다. 정재파법은 저주파수에서 음원의 출력보다 큰 출력음을 발생시킬 수 있는 스피커가 있어야 하고, 주파수별로 반복 측정해야 하는 번거로움으로 인해 실험에 어려움이 따른다. 전달함수법과 Two Load Method(TLM)는 관내에서 음압을 측정해야 하는데 엔진의 흡배기계와 같이 음압이 높거나 고온의 가스 유동이 있는 경우 측정이 매우 어렵다. 한편 Four Load Method(FLM)는 외부의 방사 음압을 측정하여 음원의 특성을 구하기 때문에 위에서 언급한 문제점들이 없는 반면에 무향실을 이용해야 한다. 본 논문은 음원의 임피던스 측정의 여러 방법 중 FLM에 의하여 스피커 음원의 임피던스를 측정하고 삽입손실을 구하면서 FLM이 가진 문제점을 검토하였다.

  • PDF

Noise and Vibration Analysis of a Flat Plate by using Modal Expansion Technique (모드 확장 기법을 이용한 평판의 진동.소음 해석)

  • 김관주;이봉노
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.654-662
    • /
    • 1998
  • To predict the radiating noise from the vibrating surface, it is required to know the velocity distribution of vibrating surface exactly as possible as it can. Although it can be obtained by finite element method, their accuracy is limited by theuncertainty of preparing input data such as material propoerties, damping, excitation, and the actual boundary conditions. Experimental values are accurate but are seldom available as many asthe data points compared to FEM mesh. Therefore, hybrid method of experiment and finite element method, called modal expansion technique, is investigated for the preparatin of accurate element method at specified frequencies and for the verification of this scheme, related experiment is performed. In high frequency range above 2000 Hz, piezo-electric material is used as an actuator.

  • PDF

Boundary element analysis of the muffler for the noise reduction of the compressors (압축기 방사 소음 저감을 위한 머플러의 경계요소 해석)

  • 왕세명;박종찬;강정환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.88-92
    • /
    • 2004
  • Mufflers have been important elements in engineering practice, which reduce various kinds of noises because of its general capability of application. Many kinds of methods :Ire applied to analyze their characteristics and to expect their performances. Some of the methods, conventionally, are based on the plane wave assumption for its simplicity. The shortcoming of this approach is its limitation of analysis ranges and parameters related with analysis and response. This research employs the boundary element method f3r the analysis of mufflers, which considers 3 dimensional scattering effects. This method can be used more appropriately fur tile analysis of mufflers because its analysis ability for higher frequency range which can be decided by the element size of the model. And, experimental analysis using a reciprocity theorem is conducted to verify the analysis results.

  • PDF

Radiation Power Control by Means of Absorptive Material Arrangement in an Enclosure (흡음재 배치를 통한 닫힌 공간에서의 소음원 방사 파워 제어)

  • 조성호;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • We have studied the possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work (1,2), the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. The possibility of total acoustic potential energy reduction by acoustic source power control is examined in an acoustically small cavity. Using acoustic energy balance equation, the relation between global noise control performance and absorptive material's arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent's distribution and impedance.

  • PDF

FEM/BEM Modeling of the Top Cap of Scroll Compressors for Analysis of Noise Radiation (스크롤 압축기 상부 캡의 방사 소음 해석을 위한 유한 요소/경계 요소 모델링)

  • Ahn, Jae-Hong;Song, Jae-Soo;Kim, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.346-350
    • /
    • 2000
  • In scroll compressors, there are two major noise sources. Sturctural path: excitation of the compressor housing by unbalance forces and forces generated by compression cycle. Gas cavity path: excitation of top cap by discharge gas pulsation. In this study, in order to analyze the radiated noise generated by the discharge gas pulsation, FEM/BEM model of the top cap is established. Measured pressure of discharge pulsation is introduced in the FEM model as the excitation and vibration response is calculated. Radiated sound pressure is then obtained by BEM method based on this vibration response. Results are compared with the measured data. It is shown that the trend of the noise radiation can be predicted in this approadch.

  • PDF

Numerical Investigation of Sound Generation in the Flow Past a Cavity (공동을 지나는 비정상 유동에 의한 소음 방사 해석)

  • Heo, Dae-Nyoung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.104-109
    • /
    • 2000
  • The modes of oscillation and radiated acoustic fields of compressible flows over open cavities are investigated computationally. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoutic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes and these oscillations lead to intense upstream acoustic radiation dominated by a single frequency. The wake mode is characterized instead by a large-scale vortex shedding. Acoustic radiation is more intense, with multiple frequencies present.

  • PDF