• Title/Summary/Keyword: 소음의 감쇠

Search Result 537, Processing Time 0.029 seconds

A Study on the Stabilization of Gun Barrel by Viscoelastic Damping Material (점탄성 감쇠재료를 이용한 포신 잔류진동의 조기 안정화 방안연구)

  • 임재희;백판구;이재영;정백기
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.714-719
    • /
    • 1999
  • Because the residual vibration of a gun barrel acts negatively on the firing of a large calibers gun, the fast stabilization of theresidual vibration is indispensible to the precise and successive firing. In this study, the residual vibrations of a gun barrel carrying a bore evacuator and a muzzle brake are investigated by the experimental method. The influence of the eigenfrequencies and the mode shapes of gun barrel on the fast stabilization of the residual vibration is studied for the various masses of bore evacuator and muzzle brake, the possition of bore evacutor. Also the relationships between the funcamental frequencies and the settling times of the gun barrel are investigated for the various parameters. The experiments to reduce the residual vibration using the viscoelastic damping treatment gives the best result among the various treatments for the reduction of residual vibration of the system.

  • PDF

Estimation of Damping Matrices for Dynamic Systems (동적 시스템의 감쇠행렬 추정)

  • Lee, Gun-Myung;Kim, Kyung-Ju;Ju, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1021-1027
    • /
    • 2009
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping. In the second stage, a damping matrix is estimated with the mass and stiffness matrices fixed. Methods to estimate a damping matrix for this purpose are proposed in this paper. For a system with proportional damping, a damping matrix is estimated using the modal parameters extracted from the measured responses and the modal matrix calculated from the mass and stiffness matrices from the first stage. For a system with non-proportional damping, a damping matrix is estimated from the impedance matrix which is the inverse of the FRF matrix. Only one low or one column of the FRF matrix is measured, and the remaining FRFs are synthesized to obtain a full FRF matrix. This procedure to obtain a full FRF matrix saves time and effort to measure FRFs.

Dynamic Characteristics of Eddy Current Damper (와전류 댐퍼의 동적특성)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.947-951
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force thus and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require the damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

  • PDF

Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters (압전 진동 에너지 수확 장치의 전기 유발 감쇠 특성 및 최대 전력 발생 조건)

  • Kim, Jae Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.406-413
    • /
    • 2015
  • The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.

Dissipation Effects Induced by Substructures Comprised of Multiple oscillators (다수의 진동체로 구성된 부 구조물에 의한 감쇠 효과)

  • Choi, Sung-Hoon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.445-452
    • /
    • 2002
  • The goal of this paper Is to characterize the vibration damping induced in a main structure by a large number of sub-oscillators. A simple expression is obtained for the substructure impedance when the number of sub-oscillators approaches Infinity. It is found that the induced damping depends on the total mass of the sub-oscillators resonating in a frequency band of interests and nearly independent of their Individual loss factors. A modal overlapping condition. which corresponds to bandwidths that exceed the spacing of those natural frequencies, is required for the sub-oscillators to have such effects. An impulse response of the system is also considered. When the sub-oscillators lack damping and do not satisfy the modal overlapping condition, the vibratory energy is returned from the sub-oscillators to the main structure at later times. The result of this paper is consistent with that found with the fuzzy structure and SEA framework.

Eigenderivative Analysis by Modification of Design Parameter in the Proportional Damping System (설계파라미터 변경에 의한 비례 감쇠구조물의 동특성 변화 해석)

  • Lee, Jung-Woo;Oh, Jae-Eung;Lee, Jung-Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.470-478
    • /
    • 2006
  • An efficient method for change of eigenvectors and eigenvalues due to the modifying proportional damping structure using sensitivity coefficients is presented. Sensitivity coefficients are determined by iteration with eigenvalue and eigenvectors before modification of system. The proposed method is applied to examples of 3 degrees of freedom system and plate by modifying mass and stiffness. The predicted change of eigenvectors and eigenvalues are in a good agreement with these from the structural re-analysis after modification of mass and stiffness.

Correlation between Dynamic Characteristics of Isolation Material and Impact Noise Reduction of Light-weight Impact Source (충격음 저감재의 동특성과 실험실 경량충격음레벨 저감량의 상관관계)

  • 이주원;정갑철;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.191-195
    • /
    • 2003
  • 충격음 저감재의 동탄성계수와 감쇠계수는 차단성능을 평가하는데 있어 중요한 물성치가 된다. 저감재의 동탄성계수는 뜬바닥구조의 고유진동수를 결정짓게 되며, 저감재의 동탄성계수가 높을수록, 즉 고유진동수가 높아짐에 따라 실험실 경량충격음레벨 저감량은 지수함수적으로 감소됨을 실험을 통해 알 수 있다. 또한, 저감재를 포함한 뜬바닥구조를 1자유도 진동계로 가정한 이론값과 실험실 경량충격음레벨 저감량의 결과가 비교적 잘 일치하는 것으로 나타났으며, 이 때 감쇠계수의 영향은 반드시 고려되어야 한다.

  • PDF

Estimations of the Hysteretic Damping by Controlled Joint Flexibilities (결합부 유연성에 따른 감쇠거동에 관한 고찰 : 히스테레틱 감쇠)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.258-264
    • /
    • 1999
  • The purpose of this paper is to investigate the damping behavior of a flexible joint. The slip at a structrual joint is selected at the tips of two identical cantilever beams adjoining each other. Both the direction of normal force and its magnitude varies due to the global deformation of the structure from mode to mode in the friction model. The friction dependent on vibration displacements resultsin the same functional behavior of the hysteretic material damping. Linearized energy loss factors are obtained as functions of both linear and torsional spring stiffness for their groups of symmetric and anti-symmetric modes, respectively. Experimental measurements as made for comparisons with analytical estimations by controlling the magnitude of fastening torque in the fastener, Hi-Lite. Trends on damping levelsmeasured in a very common vibration test method make an excellent agreement on the estimated damping levels.

  • PDF

The Significance of Transverse Shear on Vibration Damping of 90-degree Unidirectional Laminated Composites (단일방향 $90^{\circ}$적층 보의 횡전단응력이 진도감쇠에 미치는 효과)

  • 임종휘
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • On the basis of the concept of strain energy-weighted dissipation, an enhanced model for predicting damping in laminates is presented. In this model, the influence of transverse shear on $90^{\circ}$ laminates has been included with those of in-plane stresses on beam. Also, an experimental damping measurement is conducted with changing the length and the thickness of laminated beam specimen for confirmation of the model prediction. The theoretical predictions in $90^{\circ}$laminates were reasonably compared with experimental data. The transverse shear reveals to have an influence on the damping, behavior in $90^{\circ}$ laminates.

  • PDF

A Study on Material Damping of the $0^0&90^0$ Laminated Composite Sandwich Cantilever Beam inserted with Viscoelastic layer (점탄성층을 삽입한 $0^0&90^0$ 섬유강화 복합재료의 감쇠계수에 대한 연구)

  • Yim, Jong-Hee;Seo, Yun-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this paper it is to establish a comprehensive model for predicting damping in sandwich Laminated composites on the basis of strain energy method. In this model, the effect of transverse shear on the material damping has been considered with in-plane stresses. Results showed that the viscoelastic core thickness in the sandwich beam and the Length of a beam have a high impact on the material damping. The transverse shear appears to be highly influenced by the damping behavior in $0^0$ laminated sandwiched composites. However, it is Little influenced by that in $90^0$ laminated sandwiched composites.

  • PDF