• 제목/요약/키워드: 소실점 검출

검색결과 39건 처리시간 0.026초

소실점의 직교성을 이용한 구조적인 소실점 검출 방법 (Method for Structural Vanishing Point Detection Using Orthogonality on Single Image)

  • 정성기;이창형;최형일
    • 인터넷정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.39-46
    • /
    • 2017
  • 본 논문은 도심을 촬영한 실내, 실외의 영상은 대부분 직육면체를 이룬다는 "Manhattan World" 가정을 기반으로 한 소실점의 직교성을 이용한 구조적인 소실점 검출 방법을 제안한다. 소실점들이 서로 직교하는 특징은 3개의 소실점 중 검출되지 않은 소실점을 추론하는데 매우 유용하게 사용될 수 있으며 소실점이 근접하여 검출되는 경우를 방지할 수 있다. 본 논문에서는 통계적인 접근을 통해 수직 소실점을 검출하고 구조적인 방법으로 수평, 전방 소실점을 검출하였다. 실험결과에서는 제안된 방법이 기존 방법과 비교하여 소실점 검출 정확도가 향상됨을 보인다.

다중 초기 소실점을 이용한 소실점 검출 방법 (Vanishing Point Detection Method Using Multiple Initial Vanishing Points)

  • 이창형;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제18권2호
    • /
    • pp.231-239
    • /
    • 2018
  • 본 논문은 다중 초기 소실점 후보를 사용해서 소실점을 검출하는 것을 제안한다. 소실점은 3차원 구조복원 등에 사용되는 중요한 기하정보이다. 소실점은 실내 환경의 경우 세 개의 소실점이 검출된다. 기존 초기 소실점을 하나만 검출하는 방식은 가장 높은 투표합의 초기 소실점이 최적의 소실점의 위치와 다를 수 있기에 부정확 할 수 있다. 따라서 여러 개의 초기 소실점 후보 중 가장 좋은 소실점 후보를 채택하는 방식을 사용하면 처음 구해지는 초기 소실점이 적절치 않은 소실점일 경우를 대비할 수 있다. 또한 본 논문에서는 검출된 소실점을 후처리를 통해서 소실점의 위치를 조정하는 방법을 제안한다. 후처리를 통해 기존보다 정확한 소실점을 검출할 수 있다. 실험 결과는 제안하는 방법을 통해 소실점 검출의 정확도가 기존방법보다 약 1~2% 가량 높음을 보여주며, 이에 따라 성능이 향상되었음을 알 수 있다.

다중 영상과 호모그래피 행렬을 이용한 소실점 위치 향상 알고리즘 (Algorithm for improving the position of vanishing point using multiple images and homography matrix)

  • 이창형;최형일
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.477-483
    • /
    • 2019
  • 본 논문은 다중 영상과 호모그래피 행렬을 통해 소실점 위치의 정확도를 향상시키는 알고리즘을 제안한다. 단일 영상만을 활용하여 소실점 검출이 가능하지만, 여러 영상의 정보를 활용하여 소실점의 위치를 보정하면 소실점 위치의 정확도를 더 향상시킬 수 있다. 위치 정확도가 향상된 소실점을 통해 더 정확한 실내공간 정보 검출이 가능하다. 이를 위해 본 논문에서는 3개의 영상을 입력받아 정보를 검출한 후 영상의 벽면 간의 호모그래피 행렬을 검출하고, 검출된 호모그래피를 이용하여 소실점의 위치를 변환한다. 최종적으로 변환된 소실점 중 최적의 위치에 있는 소실점을 찾아내어 소실점 위치를 보정 함으로써 소실점 위치의 정확도를 향상시킨다. 실험 결과를 통해 기존의 알고리즘과 제안하는 알고리즘의 정확도를 비교 분석한다. 제안하는 알고리즘을 통해 소실점 위치에 대한 오차 각도가 약 1.62% 감소함을 확인하였고, 이를 통해 더 정밀한 소실점 검출이 가능하였다. 또한, 제안한 알고리즘을 통해 향상된 소실점을 이용하여 검출한 레이아웃이 기존 알고리즘의 결과에 비교해 더 정확한 것을 확인 할 수 있었다.

인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법 (A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures)

  • 김항태;송원석;최혁;김태정
    • 정보과학회 논문지
    • /
    • 제42권5호
    • /
    • pp.642-651
    • /
    • 2015
  • 소실점(vanishing point)이란 카메라 렌즈를 통해 3차원 공간을 2차원 영상으로 투영하는 과정에서 평행한 직선들이 수렴하는 점을 의미한다. 소실점 검출은 영상 내의 정보를 이용하여 소실점의 위치를 파악하는 것을 의미하며, 영상 내 지점들의 상대적인 거리를 파악하거나 장면 전체의 3차원 구조를 파악하는데 활용된다. 일반적으로 영상 내 평행한 직선들은 인공 구조물 내에 존재하는 경우가 많으므로 직선 검출 기반 소실점 검출 기법들은 인공 구조물 내의 직선들을 찾아 이들이 수렴하는 점을 소실점으로서 검출하는 것을 목표로 한다. 이 때, 영상 내에서 직선을 검출하기 위하여 먼저 에지 검출(edge detection)을 통해 에지 픽셀을 검출하고 그 결과를 허프 변환(Hough transform)하여 직선들을 찾아낸다. 그러나 각종 텍스쳐 및 노이즈 등 여러 원인들로 인해 위 과정에서 검출된 직선들이 모두 소실점을 지나지는 않는다. 따라서 검출된 직선들로부터 소실점을 정확히 검출하기 위해서는 각 직선에 대하여 소실점을 지날 가능성에 따라 다른 가중치를 부여하는 것이 필요한데 기존의 연구들은 가중치를 동일하게 부여하거나 단순한 수준의 가중치 계산을 적용해 왔다. 본 논문에서는 소실점을 지나는 직선들은 대부분 인공 구조물 내의 직선들임에 착안하여 직선에 가중치를 부여하는 새로운 방법을 제안하고 이를 이용한 소실점 검출 결과를 몇 가지 기존 방법들과 비교하였다. 그 결과, 기존 방법들에 비하여 소실점 추정 오류가 약 65% 감소하였다.

Histogram of Oriented Gradient를 이용한 실시간 소실점 검출 (Real-time Vanishing Point Detection Using Histogram of Oriented Gradient)

  • 최지원;김창익
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.96-101
    • /
    • 2011
  • 소실점이란 실제 공간의 평행한 선들이 영상 내에 투영되면서 한곳에 모이는 점이다. 본 논문에서는 이러한 소실점의 특성을 이용한 실시간 소실점 검출 알고리즘을 제안한다. 기존의 소실점 검출 방법은 1) 복잡한 계산이 요구되거나 2) 알고리즘에 따라 소실점을 검출할 수 있는 영상이 제한되어 있다. 제안하는 방법은 블록 기반의 HOG(Histogram of Oriented Gradient)를 구하여 영상의 구조적 특성을 이용하는 것으로 영상 내에 존재하는 소실점을 실시간으로 검출한다. 먼저 영상의 블록 단위로 HOG 기술자를 구한 뒤, 제안하는 동적 프로그래밍(dynamic programing)을 이용하여 소실점의 위치를 예측한다. 본 논문에서는 다양한 영상에 대한 실험을 통해 제안하는 알고리즘이 효율적인 소실점 검출 방법임을 보이고자 한다.

선분분류를 이용한 실내영상의 소실점 추출 (Vanishing Points Detection in Indoor Scene Using Line Segment Classification)

  • 마조청;권오봉
    • 한국콘텐츠학회논문지
    • /
    • 제13권8호
    • /
    • pp.1-10
    • /
    • 2013
  • 본 논문에서는 선분분류를 이용하여 실내영상의 소실점을 검출하는 방법을 제안한다. 실내영상을 효율적으로 검출하기 위하여 2 단계로 소실점을 추출한다. 1 단계에서는 이미지가 1 점 투시인지 2 점 투시인지 판별한다. 만일 이미지가 2 점 투시이면, 선분분류를 위하여 검출된 소실점을 지나는 수평선을 구한다. 2 단계에서는 선분분류를 이용하여 2 개의 소실점을 정확히 검출한다. 또 본 논문에서는 인공영상과 이미지 DB를 이용하여 제안한 방법을 평가하였다. 노이즈를 첨가한 인공 영상에 대해서는 노이즈가 60%를 차지할 때까지 검출한 소실점과 실제 소실점과의 차이가 16 픽셀 이하였다. A. Quattoni 와 A. Torralba가 제안한 이미지 DB를 이용한 평가에서는 87% 이상의 이미지에 대하여 소실점을 검출하였다.

기하구조 기반 깊이 추정에 적합한 소실점 검출 기법 (Vanishing Point Detection Method suited to Geometry-based Depth Estimation)

  • 김준호;강현수;김진수;최해철;이시웅
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.121-123
    • /
    • 2012
  • 본 논문에서는 2D-to-3D 변환을 위한 기하구조 기반 깊이 추정에 적합한 소실점 검출 기법을 제안한다. 3D 공간에서 평행한 직선들은 2D 공간으로의 투시영상에서 시점에서 멀어질수록 간격이 좁아지고, 결국에는 한 점으로 수렴하게 된다. 수렴된 점을 소실점(vanishing point)이라 하고, 소실점을 거쳐 지나는 직선들을 소실선(vanishing lines)이라고 한다. 일반적으로, 인간은 소실선과 소실점을 추정한 2D 영상에서 소실점이 관찰자 시점으로부터 제일 먼 지점이라는 인식을 이용하여 깊이 정보를 인지할 수 있다. 전경영역과 배경영역 간의 경계에서는 수직성분을 가진 선들이 생성되어 올바른 소실점을 검출하는데 방해가 될 수 있다. 그렇기 때문에 본 논문에서는 수직성분을 가진 선들을 제거하여 소실점을 탐색하는 기법을 제안한다.

  • PDF

반전 좌표계 영상 공간을 이용한 효과적 소실점 검출 (Effective Detection of Vanishing Points Using Inverted Coordinate Image Space)

  • 이정화;서경석;최흥문
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.147-154
    • /
    • 2004
  • 본 논문에서는 반전 좌표계 영상 공간 (inverted-coordinate image space: ICIS)을 이용하여 유한 및 무한 소실점을 그 위치의 제약이나 카메라 보정 (calibration) 없이 효과적으로 검출하는 방법을 제안하였다. 제안한 방법에서는 소실점 검출을 위한 무한(unbounded) 누적 공간을 한정된 부공간 (bounded subspace)들로 분할 매핑하기 때문에 기존의 영상 공간 기반법과 달리 모든 영상에 대해 소량의 고정 메모리 요구량으로도 유, 무한 소실점을 모두 검출할 수 있다. 영상 공간을 누적 공간으로 이용하기 때문에 기존의 가우시안 구 (Gaussian sphere) 기반법이나 허프 공간 (Hough) 기반법과도 달리 카메라 보정이나 원 영상에 대한 정보손실 없이 각 소실점들을 정확하게 추출할 수 있다. 제안한 방법을 다양한 건축 구조물 영상 (architectural images)에 적용시켜 유한 및 무한 소실점들을 효과적이고 정확하게 검출할 수 있음을 확인하였다.

3차원 영상의 자동 소실점 검출을 위한 분할 영상 좌표계 (Split Image Coordinate for Automatic Vanishing Point Detection in 3D images)

  • 이정화;김종화;서경석;최흥문
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1891-1894
    • /
    • 2003
  • 본 논문에서는 분할 영상 좌보계 (split image coordinate: SIC)를 제안하여 3차원 영상의 주요 특징 중의 하나인 유, 무한 소실점을 그 위치의 무한성이나 카메라의 보정과 관계없이 정확하게 자동 추출하였다. 제안한 방법에서는 가우시안 구 (Gaussian sphere) 기반의 기존 방법들과는 달리 영상 공간을 누적 공간으로 활용함으로써 카메라 보정이나 영상의 사전정보가 없어도 원 영상의 정보 손실 없이 소실점을 추출할 수 있고, 영상을 무한대까지 확장한 후 분할하여 재정의 함으로써 유, 무한 소실점을 모두 추출할 수 있도록 하였다. 정확한 소실점의 검출을 위하여 직선 검출 과정에서는 방향성 마스크 (mask)를 사용하였으며, 직선들의 군집화 (clustering) 과정에서는 기울기 히스토그램 방법과 수평/수직 군집화 방법을 적응적으로 적용하였다. 제안한 방법을 합성 영상 및 건축물 (man-made environment) 영상에 적용시켜 유, 무한 소실점들을 효과적이고 정확하게 찾을 수 있음을 확인하였다.

  • PDF

RANSAC을 이용한 실외 도로 환경의 소실점 예측 방법 (The Method of Vanishing Point Estimation in Natural Environment using RANSAC)

  • 원선희;주성일;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권9호
    • /
    • pp.53-62
    • /
    • 2013
  • 본 논문에서는 입력된 자연영상으로부터 도로 영역을 검출하기 위한 소실점 자동 예측 방법을 제안한다. 제안하는 방법에서는 도로 환경에서 안정적으로 소실점을 검출하기 위해 영상의 주방향성을 분석하여 영상 특징성분들이 집중되는 곳을 소실점으로 예측한다. 이를 위해 첫번째 단계에서는, 영상을 일정크기의 서브블록으로 분할하고 분할된 서브블록 내에서 임의의 에지 샘플을 선택하고 RANSAC을 적용하여 직선 모델을 예측함으로서 각 서브블록의 주방향성을 분석한다. 모든 블록에 대하여 주방향성을 검출한 후, 두 번째 단계에서 임의의 직선 샘플을 선택하고 RANSAC을 적용하여 교점 모델을 예측함으로서 각 직선들로 인한 교점 모델의 비용값을 측정하고 가장 높은 비용값의 교점 모델에 의한 평균점으로 소실점을 예측한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 소실점 검출 알고리즘의 타당성과 효율성을 입증한다.