• Title/Summary/Keyword: 소스 노드

Search Result 304, Processing Time 0.026 seconds

An Efficient Group Key Distribution Mechanism for the Secure Multicast Communication in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 안전한 멀티캐스트 통신을 위한 효율적인 그룹 키 분배 방식)

  • Lim Yu-Jin;Ahn Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.339-344
    • /
    • 2006
  • Secure delivery of multicast data can be achieved with the use of a group key for data encryption in mobile ad hoc network (MANET) applications based on the group communication. However, for the support of dynamic group membership, the group key has to be updated for each member joining/leaving and, consequently, a mechanism distributing an updated group key to members is required. The two major categories of the group key distribution mechanisms proposed for wired networks are the naive and the tree-based approaches. The naive approach is based on unicast, so it is not appropriate for large group communication environment. On the other hand, the tree-based approach is scalable in terms of the group size, but requires the reliable multicast mechanism for the group key distribution. In the sense that the reliable multicast mechanism requires a large amount of computing resources from mobile nodes, the tree-based approach is not desirable for the small-sized MANET environment. Therefore, in this paper, we propose a new key distribution protocol, called the proxy-based key management protocol (PROMPT), which is based on the naive approach in the small-sized MANET environment. PROMPT reduces the message overhead of the naive through the first-hop grouping from a source node and the last-hop grouping from proxy nodes using the characteristics of a wireless channel.

An Algorithm to Detect P2P Heavy Traffic based on Flow Transport Characteristics (플로우 전달 특성 기반의 P2P 헤비 트래픽 검출 알고리즘)

  • Choi, Byeong-Geol;Lee, Si-Young;Seo, Yeong-Il;Yu, Zhibin;Jun, Jae-Hyun;Kim, Sung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.317-326
    • /
    • 2010
  • Nowadays, transmission bandwidth for network traffic is increasing and the type is varied such as peer-to-peer (PZP), real-time video, and so on, because distributed computing environment is spread and various network-based applications are developed. However, as PZP traffic occupies much volume among Internet backbone traffics, transmission bandwidth and quality of service(QoS) of other network applications such as web, ftp, and real-time video cannot be guaranteed. In previous research, the port-based technique which checks well-known port number and the Deep Packet Inspection(DPI) technique which checks the payload of packets were suggested for solving the problem of the P2P traffics, however there were difficulties to apply those methods to detection of P2P traffics because P2P applications are not used well-known port number and payload of packets may be encrypted. A proposed algorithm for identifying P2P heavy traffics based on flow transport parameters and behavioral characteristics can solve the problem of the port-based technique and the DPI technique. The focus of this paper is to identify P2P heavy traffic flows rather than all P2P traffics. P2P traffics are consist of two steps i)searching the opposite peer which have some contents ii) downloading the contents from one or more peers. We define P2P flow patterns on these P2P applications' features and then implement the system to classify P2P heavy traffics.

Method of Detecting and Isolating an Attacker Node that Falsified AODV Routing Information in Ad-hoc Sensor Network (애드혹 센서 네트워크에서 AODV 라우팅 정보변조 공격노드 탐지 및 추출기법)

  • Lee, Jae-Hyun;Kim, Jin-Hee;Kwon, Kyung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2293-2300
    • /
    • 2008
  • In ad-hoc sensor network, AODV routing information is disclosed to other nodes because AODV protocol doesn't have any security mechanisms. The problem of AODV is that an attacker can falsify the routing information in RREQ packet. If an attacker broadcasts the falsified packet, other nodes will update routing table based on the falsified one so that the path passing through the attacker itself can be considered as a shortest path. In this paper, we design the routing-information-spoofing attack such as falsifying source sequence number and hop count fields in RREQ packet. And we suggest an efficient scheme for detecting the attackers and isolating those nodes from the network without extra security modules. The proposed scheme doesn't employ cryptographic algorithm and authentication to reduce network overhead. We used NS-2 simulation to evaluate the network performance. And we analyzed the simulation results on three cases such as an existing normal AODV, AODV under the attack and proposed AODV. Simulation results using NS2 show that the AODV using proposed scheme can protect the routing-information-spoofing attack and the total n umber of received packets for destination node is almost same as the existing norm at AODV.

A Study on Reactive Congestion Control with Loss Priorities in ATM Network (ATM 네트워크에서 우선권을 갖는 반응 혼잡 제어에 관한 연구)

  • Park, Dong-Jun;Kim, Hyeong-Ji
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.697-708
    • /
    • 1996
  • In this paper, we study reactive congestion control with priority in ATM network. The priority schemes for buffer access, partial buffer sharing have been investigated in order to improve the utilization of ATM network resources the network and to satisfy the most demanding traffic class. We consider in this paper a discrete-time queueing model for partial buffer sharing with two Markov modulated Poisson inputs. This model can be used to analyze the the effects of the partial buffer sharing priority scheme on system performance for realistic cases of bursty services. Explicit formulae are derived for the number of cells in the system and the loss probabilities for the traffic. Congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this Paper, we study reactive congestion control, in which each source changes its cell emitting rate a daptively to the traffic load at the switching node. Our intention is that,by incorporating such a congcstion control method in ATM network,more efficient congsestion control is established. We develope an analytical model,and carry out an approximateanalysis of reactive congestion con-trol with priority.Numerical results show that several orders of magnitude improvement in the loss probability can be achieved for the high priority class with little impact on the low priority class performance.And the results show that the reactive congestion control with priority are very effective in avoiding congestion and in achieving the statistical gain.

  • PDF

Virtual Source and Flooding-Based QoS Unicast and Multicast Routing in the Next Generation Optical Internet based on IP/DWDM Technology (IP/DWDM 기반 차세대 광 인터넷 망에서 가상 소스와 플러딩에 기초한 QoS 제공 유니캐스트 및 멀티캐스트 라우팅 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Routing technologies considering QoS-based hypermedia services have been seen as a crucial network property in next generation optical Internet (NGOI) networks based on IP/dense-wavelength division multiplexing (DWDM). The huge potential capacity of one single fiber. which is in Tb/s range, can be exploited by applying DWDM technology which transfers multiple data streams (classified and aggregated IP traffics) on multiple wavelengths (classified with QoS-based) simultaneously. So, DWDM-based optical networks have been a favorable approach for the next generation optical backbone networks. Finding a qualified path meeting the multiple constraints is a multi-constraint optimization problem, which has been proven to be NP-complete and cannot be solved by a simple algorithm. The majority of previous works in DWDM networks has viewed heuristic QoS routing algorithms (as an extension of the current Internet routing paradigm) which are very complex and cause the operational and implementation overheads. This aspect will be more pronounced when the network is unstable or when the size of network is large. In this paper, we propose a flooding-based unicast and multicast QoS routing methodologies(YS-QUR and YS-QMR) which incur much lower message overhead yet yields a good connection establishment success rate. The simulation results demonstrate that the YS-QUR and YS-QMR algorithms are superior to the previous routing algorithms.

Reliable Extension Scheme using Multiple Paths in Wireless Ad-hoc Networks (무선 애드-혹 네트워크의 다중 경로를 이용한 신뢰적인 확장 기법)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.218-225
    • /
    • 2007
  • As the research on home network technologies, sensor network technologies, and ubiquitous network technologies makes rapid progresses, wireless ad-hoc network have attracted a lot of attention. A wireless mobile ad-hoc network is a temporary network formed by a collection of wireless mobile nodes without the aid of any existing network infrastructure or centralized administration, and it is suitable for ubiquitous computing environments. In this paper, we suggest an extension scheme of a wireless mobile ad-hoc network based on limited multiple paths source routing protocol. This scheme reduces the overhead of route re-establishment and re-registration by maintaining link/node non-disjoint multiple paths between mobile hosts in a wireless mobile ad-hoc network or a mobile host in a wireless mobile ad-hoc network and a base station supporting fixed network services. By maintaining multiple paths, our scheme provides short end-to-end delay and is reliable extension scheme of a wireless mobile ad-hoc network to a fixed network. In this paper, our simulations show that our scheme outperforms existing schemes with regards to throughput and end-to-end delay. Also we show that our scheme outperforms multi-paths approach using disjoint routes with regards to routing overhead.

Interconnection Scheme for Multiple Path Source Routing Protocol for Wireless Mobile Ad-hoc Network and Mobile-IP (무선 이동 애드-혹 네트워크를 위한 다중 경로 소스 라우팅 프로토콜과 Mobile-IP의 연동 기법)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1031-1038
    • /
    • 2005
  • As the research on home network technologies, sensor network technologies, and ubiquitous network technologies makes rapid progresses, wireless ad-hoc network have attracted a lot of attention. A wireless ad-hoc network is a temporary network formed by a collection of wireless mobile nodes without the aid of my existing network infrastructure or centralized administration, and it is suitable for ubiquitous computing environments. In this paper, we suggest an interconnection scheme between the wireless ad-hoc network environment based on multiple path source routing protocol and a Mobile-IP based network environment. This scheme reduces the overhead of route re-establishment and re-registration by maintaining multiple paths between the mobile host in wireless ad-hoc network and the base station in mobile-IP network. Also it puts the base station in charge of function that performs translation between wireless ad-hoc network packets and Mobile-IP packets, reducing the load of mobile hosts. In this paper, our simulations show that our scheme outperforms existing interconnecting schemes with regards to throughput and end-to-end delay Also we show that our scheme outperforms multi-paths approach using disjoint routes with regards to routing overhead.

A Point-based Resource Distribution Scheme and Its Characteristics for Mobile P2P Streaming Service (모바일 P2P 스트리밍 서비스를 위한 포인트 기반 자원 배분 기법과 그 특성)

  • Kim, Yangjung;Chong, Ilyoung;Han, Chimoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.33-42
    • /
    • 2013
  • In the early stage of P2P, the technology was limited to narrow usage of file sharing, but currently, P2P technology has become essential to maximize the efficiency between associated technologies without additional deployment of high costly infrastructure and also the burden of the server. Especially, P2P media streaming service is a highly attractive service to mobile users. which requires a higher quality in the mobile environment in accordance with the development of technology of wired network as well as better mobile terminals. However, P2P technology should consider the trade-off between 'peer selfishness' and QoE for providing fairness. The P2P system also try to maximize the resource utilization through an incentive mechanism for service differentiation and encourage peers to contribute continuously for improving the overall system performance. In this paper, we propose an point-based incentive mechanism based on peer's contribution level and energy availability for service differentiation. We also introduce that the proposed mechanism efficiently enhances the system performance as the peer with incentive using contribution and energy obtains more effective resource distribution.

A Real-Time Data Transfer Mechanism Considering Link Error Rates in Wireless Sensor Networks (무선 센서 네트워크에서 링크 에러율을 고려한 실시간 데이터 전달 기법)

  • Choi, Jae-Won;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.146-154
    • /
    • 2007
  • In this paper, we have presented a real-time transfer mechanism for the delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is shortest or the number of hops is least. Although the approaches of these methods are acceptable, they do not always work as efficiently as they can because they had no consideration for the link error rates. In the case of transmission failures on links, they can not guarantee the end-to-end real-time transfer due to retransmissions. Therefore, we have proposed an algorithm to select a real-time transfer path in consideration of the link error rates. Our mechanism estimates the 1-hop delay based on the link error rate between two neighboring nodes, which in turn enables the calculation of the expected end-to-end delay. A source node comes to choose a path with the shortest end-to-end delay as a real-time route, and sends data along the path chosen. We performed various experiments changing the link error rates and discovered that this proposed mechanism improves the speed of event-to-sink data transfer and reduces delay jitter. We also found that this mechanism prevents additional energy consumption and prolongs network lifetime, resulting from the elative reduction of transmission failures and retransmissions.

Energy and Delay-Efficient Multipath Routing Protocol for Supporting Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 다중 경로 라우팅 프로토콜)

  • Lee, Hyun Kyu;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.447-454
    • /
    • 2016
  • The research on multipath routing has been studied to solve the problem of frequent path breakages due to node and link failures and to enhance data delivery reliability in wireless sensor networks. In the multipath routing, mobile sinks such as soldiers in battle fields and rescuers in disaster areas bring about new challenge for handling their mobility. The sink mobility requests new multipath construction from sources to mobile sinks according to their movement path. Since mobile sinks have continuous mobility, the existing multipath can be exploited to efficiently reconstruct to new positions of mobile sinks. However, the previous protocols do not address this issue. Thus, we proposed an efficient multipath reconstruction protocol called LGMR for mobile sinks in wireless sensor networks. The LGMR address three multipath reconstruction methods based on movement types of mobile sinks: a single hop movement-based local multipath reconstruction, a multiple hop movement-based local multipath reconstruction, and a multiple hop movement-based global multipath reconstruction. Simulation results showed that the LGMR has better performance than the previous protocol in terms of energy consumption and data delivery delay.