• Title/Summary/Keyword: 소속함수

Search Result 421, Processing Time 0.027 seconds

A Study on the Selection Method of Subject Parcel to Alter Land Category by Fuzzy GIS Analysis - Focused on Road State of Government Owned and Public Land - (퍼지 GIS 공간분석에 의한 지목변경 대상필지 선정방법에 관한 연구 - 국공유지 도로현황을 중심으로 -)

  • Cho, Tae-In;Choi, Byoung-Gil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.57-66
    • /
    • 2011
  • The purpose of this study is to research into a method of selecting the subject parcel with a change in the category of land given surveying the land alteration state focusing on the present state of road in the government-owned and public land by using the fuzzy membership function and GIS spatial analysis. It selected the old town center of Incheon Jung-gu, and the new downtown & the forest land of Gyeyang-gu as the research subject region, and carried out GIS spatial analysis on a serial cadastral map, urban planning road layer of Korea Land Information System, practical width of road layer of Road Name Address Management System & cadastral data base, and then calculated the suitable index for the subject parcel with a change in the category of land by using the fuzzy membership function with having the critical value as the area ratio of each parcel on a serial cadastral map that was incorporated into road layer or practical width of road layer. It finally selected the parcel, which is different in land category from the real land usage, as the final subject parcel for altering land category, by using the screen of visualizing the suitable index and the aerial ortho photograph. As a result of the final selection, the fuzzy GIS spatial analysis method, which was suggested in this study, is judged to be efficient in the selection period and the methodology compared to the existing manual method. It could be confirmed to be more suitable method for downtown than forest land and for the new downtown than the old town center.

Face Recognition using Eigenfaces and Fuzzy Neural Networks (고유 얼굴과 퍼지 신경망을 이용한 얼굴 인식 기법)

  • 김재협;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Detection and recognition of human faces in images can be considered as an important aspect for applications that involve interaction between human and computer. In this paper, we propose a face recognition method using eigenfaces and fuzzy neural networks. The Principal Components Analysis (PCA) is one of the most successful technique that have been used to recognize faces in images. In this technique the eigenvectors (eigenfaces) and eigenvalues of an image is extracted from a covariance matrix which is constructed form image database. Face recognition is Performed by projecting an unknown image into the subspace spanned by the eigenfaces and by comparing its position in the face space with the positions of known indivisuals. Based on this technique, we propose a new algorithm for face recognition consisting of 5 steps including preprocessing, eigenfaces generation, design of fuzzy membership function, training of neural network, and recognition. First, each face image in the face database is preprocessed and eigenfaces are created. Fuzzy membership degrees are assigned to 135 eigenface weights, and these membership degrees are then inputted to a neural network to be trained. After training, the output value of the neural network is intupreted as the degree of face closeness to each face in the training database.

The Fuzzy Wavelet Neural Network System based on the improved ANFIS (개선된 ANFIS 기반 퍼지 웨이브렛 신경망 시스템)

  • 변오성;박인규;백덕수;문성룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.129-132
    • /
    • 2002
  • 본 논문은 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)와 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 함수로 구성이 되었고, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 여기 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.

  • PDF

Multi-Objective Fuzzy Optimization of Structures (구조물에 대한 다목적퍼지최적화)

  • Park, Choon-Wook;Pyeon, Hae-Wan;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.503-513
    • /
    • 2000
  • This study treats the criteria, considering the fuzziness occurred by optimization design. And we applied two weighting methods to show the relative importance of criteria. This study develops multi-objective optimization programs implementing plain stress analysis by FEM and discrete optimization design uniformaly. The developed program performs a sample design of 10-member steel truss. This study can carry over the multi-objective optimization based on total system fuzzy-genetic algorithms while performing the stress analysis and optimization design. Especially, when general optimization with unreliable constraints is cannot be solve this study can make optimization design closed to realistic with fuzzy theory.

  • PDF

Classification of Epilepsy Using Distance-Based Feature Selection (거리 기반의 특징 선택을 이용한 간질 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.321-327
    • /
    • 2014
  • Feature selection is the technique to improve the classification performance by using a minimal set by removing features that are not related with each other and characterized by redundancy. This study proposed new feature selection using the distance between the center of gravity of the bounded sum of weighted fuzzy membership functions (BSWFMs) provided by the neural network with weighted fuzzy membership functions (NEWFM) in order to improve the classification performance. The distance-based feature selection selects the minimum features by removing the worst features with the shortest distance between the center of gravity of BSWFMs from the 24 initial features one by one, and then 22 minimum features are selected with the highest performance result. The proposed methodology shows that sensitivity, specificity, and accuracy are 97.7%, 99.7%, and 98.7% with 22 minimum features, respectively.

A Ranking Method for Type-2 Fuzzy Values (타입-2 퍼지값의 순위결정)

  • Lee, Seung-Soo;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.341-346
    • /
    • 2002
  • Type-1 fuzzy set is used to show the uncertainty in a given value. But there are many situations where it needs to be extended to type-2 fuzzy set because it can be also difficult to determine the crisp membership function itself. Type-2 fuzzy systems have the advantage that they are more expressive and powerful than type-1 fuzzy systems, but they require many operations defined for type-1 fuzzy sets need to be extended in the domain of type-2 fuzzy sets. In this paper, comparison and ranking methods for type-2 fuzzy sets are proposed. It is based on the satisfaction function that produces the comparison results considering the actual values of the given type-2 fuzzy sets with their possibilities. Some properties of the proposed method are also analyzed.

Fuzziness for Buckling Loads of Columns with Uncertain Medums (불확실한 매체를 갖는 기둥 좌굴하중의 애매성)

  • 이병구;오상진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

Automatic Premature Ventricular Contraction Detection Using NEWFM (NEWFM을 이용한 자동 조기심실수축 탐지)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.378-382
    • /
    • 2006
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM). NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The two most important coefficients are selected by the non-overlap area distribution measurement method to minimize the classification rules that show PVC classification rate of 99.90%. By Presenting locations of the extracted two coefficients based on the R wave location, it is shown that PVC can be detected using only information of the two portions.

A Study on a Sensitivity Processing Using a Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 감성 처리에 관한 연구)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • In recent, the issues of sensitivity and psychology of human have received much attention from researchers and practitioners. In this paper. we analyze the information of color and location in order to detect the sensitivity and psychology by means of human vision on color space organization in a presented picture. After this process, we propose a method to determine psychology states through the space organization by using a fuzzy membership function which can be used to analyze direction information for the sensitivity. The proposed method is applied to the psychology states based on the space organization of Alschuler and Hattcick's method and to the space organization of Gunnwald's method. As a result, we present that the proposed method is very similar to a pattern classification of Alschuler and Grunwald.

  • PDF

Performance Assessment System using Fuzzy Reasoning Rule (펴지 추론 규칙을 이용한 수행 평가 시스템)

  • Kim Kwang Baek;Cho Jae Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.209-216
    • /
    • 2005
  • Performance assessment has Problems about possibilities of assessment fault by appraisal, fairness, reliability, and validity of grading, ambiguity of grading standard, difficulty about objectivity security etc. This study proposes fuzzy Performance assessment system to solve problem of the conventional performance assessment. This Paper presented an objective and reliable performance assessment method through fuzzy reasoning, design fuzzy membership function and define fuzzy rule analyzing factor that influence in each sacred ground of performance assessment to account principle subject. Also, performance assessment item divides by formation estimation and subject estimation and designed membership function in proposed performance assessment method. Performance assessment result that is worked through fuzzy Performance assessment system can pare down burden about appraisal's fault and provide fair and reliable assessment result through grading that have correct standard and consistency to students.

  • PDF