• Title/Summary/Keyword: 소속도 함수

Search Result 421, Processing Time 0.023 seconds

Aggregation Based on Situation Assessment (상황 평가에 기반을 둔 병합)

  • Choi, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2584-2590
    • /
    • 1998
  • In the existing fuzzy aggregation method, the operators such as t-norm, t conorm, mean operator, Yafer's operator and $\gamma$ operator are used to aggregate the values of membership functions. However, these methods have problems in that they do not reflect the decision situation properlyin the decision process. In order to solve these problems we suggest a situation assessment model(SAM) to reflect the decision situation in the decision proess. In the fuzzy decision environment, we propose a new aggregation method to reflect the decision situation using the result of SAM. We call it the aggregation based on situation assessment (ASA) method. It makes the stepwise aggregation with derection according to the decision situation. Moreover, we compare ASA method with the existing aggregation methods.

  • PDF

Automatic Premature Ventricular Contraction Detection Using NEWFM (NEWFM을 이용한 자동 조기심실수축 탐지)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.378-382
    • /
    • 2006
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM). NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The two most important coefficients are selected by the non-overlap area distribution measurement method to minimize the classification rules that show PVC classification rate of 99.90%. By Presenting locations of the extracted two coefficients based on the R wave location, it is shown that PVC can be detected using only information of the two portions.

A Study on a Sensitivity Processing Using a Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 감성 처리에 관한 연구)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • In recent, the issues of sensitivity and psychology of human have received much attention from researchers and practitioners. In this paper. we analyze the information of color and location in order to detect the sensitivity and psychology by means of human vision on color space organization in a presented picture. After this process, we propose a method to determine psychology states through the space organization by using a fuzzy membership function which can be used to analyze direction information for the sensitivity. The proposed method is applied to the psychology states based on the space organization of Alschuler and Hattcick's method and to the space organization of Gunnwald's method. As a result, we present that the proposed method is very similar to a pattern classification of Alschuler and Grunwald.

  • PDF

Performance Assessment System using Fuzzy Reasoning Rule (펴지 추론 규칙을 이용한 수행 평가 시스템)

  • Kim Kwang Baek;Cho Jae Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.209-216
    • /
    • 2005
  • Performance assessment has Problems about possibilities of assessment fault by appraisal, fairness, reliability, and validity of grading, ambiguity of grading standard, difficulty about objectivity security etc. This study proposes fuzzy Performance assessment system to solve problem of the conventional performance assessment. This Paper presented an objective and reliable performance assessment method through fuzzy reasoning, design fuzzy membership function and define fuzzy rule analyzing factor that influence in each sacred ground of performance assessment to account principle subject. Also, performance assessment item divides by formation estimation and subject estimation and designed membership function in proposed performance assessment method. Performance assessment result that is worked through fuzzy Performance assessment system can pare down burden about appraisal's fault and provide fair and reliable assessment result through grading that have correct standard and consistency to students.

  • PDF

A Neuro-Fuzzy Model Optimization Using Rough Set Theory (러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화)

  • 연정흠;서재용;김용택;조현찬;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.188-193
    • /
    • 2000
  • This paper presents an approach to obtain a reduced neuro-fuzzy model for a plant. The Neuro-Fuzzy Network are compose of the Radial Basis Function Networks with Gausis membership and learned by using temporal back propagation. The dependency in rough set theory is used to eliminate rules. Dependency between the condition membership value of each rule in a model and the output of the plant can allow us to see how much contribution the rule is to identify the plant. While the reduced model maintains the same performance as the original one, the selection algorithm can minimize its complexity and redundancy of the structure.

  • PDF

Neuro-Fuzzy Modeling Learning method based on Clustering (클러스터링 기반 뉴로-퍼지 모델링 학습)

  • Kim S. S.;Kwak K. C.;Lee D. J.;Kim S. S.;Ryu J, W.;Kim J. S.;Kim Y. T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.289-292
    • /
    • 2005
  • 본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm (Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계)

  • Kim Sung-Hoe;Kim Ki-Yeoul
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, I will propose the Niche-Meta Genetic Algorithm that has a multi-mutation operator for design of fuzzy controller. The gene in the proposed algorithm is formed by several parameters that represent the crossover rate, mutation rate and input-output membership functions. The optimization of fuzzy membership function is performed with local search on sub-population and the optimal structure is constructed with global search on total-population. The multi-mutation is selected under basis of the result of local evolution. A simulation for 2 D.O.F wheeled-mobile robot is showed to prove the efficiency of the proposed algorithm

  • PDF

Study on Fuzzy Control of Electric Car via TMS320F240 (TMS320F240 칩을 이용한 전동차의 퍼지 주행 제어기에 대한 연구)

  • Son, J.W.;Choi, S.M.;Song, D.K.;Kim, J.K.;Bae, J.I.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2381-2383
    • /
    • 1998
  • 직류직권모터는 전동지게차와 같은 물류용 전동차에서 사용되는데, 우수한 기동 토오크를 가지는 반면에 파라미터의 열적, 변화가 심하고 마찰과 부하의 비선형성이 존재해 기존의 제어기로는 만족할 만한 성능을 내지 못한다. 본 논문에서는 이를 해결하기 위해 퍼지제어기를 사용한다. 퍼지제어기는 변수의 애매성에 바탕을 두고 제어하기 때문에 이러한 비선형성에 대해 강인하나, 소속함수의 결정과 퍼지규칙의 선정이 어려우며, 체계적인 방법이 존재하지 않는다. 이러한 퍼지제 어의 결점을 해결하기 위해 소속함수는 유전 알고리즘을 통해 자기동조 시키며 퍼지규칙은 오차와 오차변화율의 위상평면을 이용하여 결정한다. 실용성을 검증하기 위해 TI사의 DSP TMS320F240을 이용해 실시스템에 적용했으며, 이를 통해 부하의 변동 및 기준 속도의 변화에도 잘 대처함을 알 수가 있었다.

  • PDF

Efficient Fuzzy Rule Generation Using Fuzzy Decision Tree (퍼지 결정 트리를 이용한 효율적인 퍼지 규칙 생성)

  • 민창우;김명원;김수광
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.59-68
    • /
    • 1998
  • The goal of data mining is to develop the automatic and intelligent tools and technologies that can find useful knowledge from databases. To meet this goal, we propose an efficient data mining algorithm based on the fuzzy decision tree. The proposed method combines comprehensibility of decision tree such as ID3 and C4.5 and representation power of fuzzy set theory. So, it can generate simple and comprehensive rules describing data. The proposed algorithm consists of two stages: the first stage generates the fuzzy membership functions using histogram analysis, and the second stage constructs a fuzzy decision tree using the fuzzy membership functions. From the testing of the proposed algorithm on the IRIS data and the Wisconsin Breast Cancer data, we found that the proposed method can generate a set of fuzzy rules from data efficiently.

  • PDF

A Design of Fuzzy Control System Using Fusion Method and Genetric Algorithm (Fusion Method와 유전자 알고리즘을 이용한 퍼지 제어 시스템의 설계)

  • 이영신;이윤배;나영남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.165-177
    • /
    • 2000
  • A fuzzy controller need membership functions and the control rules depend on heuristic knowledge of expertises entirely. On account of, it is possible that a desired performance of a fuzzy controller can not be guaranteed or easily degraded under some circumstances such as a change of plant parameter which exporters do not considered. Therefore, in this paper we tried to increase the controller's efficiency by adjusting the control rules and the parameters of the membership functions by using a genetic algorithm. We also proposed the Self-Organizing Fuzzy Controller which uses the Fusion Method in order to minimize the number of control rules and to construct the intuitive controller. For validation of the proposed algorithm, we design the Autonomous Guided Vehicle Controller, then apply to variant condition.

  • PDF