• Title/Summary/Keyword: 소속도함수

Search Result 99, Processing Time 0.019 seconds

Intelligent Traffic Light Control using Fuzzy Method (퍼지 기법을 이용한 지능형 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1593-1598
    • /
    • 2012
  • In this paper, we propose an intelligent signal control method based on fuzzy logic applicable in real time. We design membership functions to model occupied time and the number of vehicles for each lane. A priority for each signal phase is computed by the popular Max-Min fuzzy inference based on control rules and membership degrees of prepared two functions at any given time. A tie breaking scheme is considering weighted sum of the rate of occupied time per number of vehicles in that block and the standard deviation of these blocks. Only a signal phase with the highest priority is opened and all others are closed and the duration of the phase opening is computed proportional to the rate of number of weighting vehicles in that signal per all weighted vehicles. The simulation result shows that the proposed method is more efficient than the static control in all simulation conditions in $2{\times}3$ experimental designs with the number of vehicles in intersection and congestion degrees that have all three levels.

Nucleus Recognition of Uterine Cervical Pap-Smears using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식)

  • Kim, Kwang-Baek;Song, Doo-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • In this paper, we apply a set of algorithms to classily normal and cancer nucleus from uterine cervical pap-smear images. First, we use lightening compensation algorithm to restore color images that have defamation through the process of obtaining $1{\times}400$ microscope magnification. Then, we remove the background from images with the histogram distributions of RGB regions. We extract nucleus areas from candidates by applying histogram brightness, Kapur method, and our own 8-direction contour tracing algorithm. Various binarization, cumulative entropy, masking algorithms are used in that process. Then, we are able to recognize normal and cancer nucleus from those areas by using three morphological features - directional information, the size of nucleus, and area ratio - with fuzzy membership functions and deciding rules we devised. The experimental result shows our method has low false recognition rate.

  • PDF

Face Recognition using Eigenfaces and Fuzzy Neural Networks (고유 얼굴과 퍼지 신경망을 이용한 얼굴 인식 기법)

  • 김재협;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Detection and recognition of human faces in images can be considered as an important aspect for applications that involve interaction between human and computer. In this paper, we propose a face recognition method using eigenfaces and fuzzy neural networks. The Principal Components Analysis (PCA) is one of the most successful technique that have been used to recognize faces in images. In this technique the eigenvectors (eigenfaces) and eigenvalues of an image is extracted from a covariance matrix which is constructed form image database. Face recognition is Performed by projecting an unknown image into the subspace spanned by the eigenfaces and by comparing its position in the face space with the positions of known indivisuals. Based on this technique, we propose a new algorithm for face recognition consisting of 5 steps including preprocessing, eigenfaces generation, design of fuzzy membership function, training of neural network, and recognition. First, each face image in the face database is preprocessed and eigenfaces are created. Fuzzy membership degrees are assigned to 135 eigenface weights, and these membership degrees are then inputted to a neural network to be trained. After training, the output value of the neural network is intupreted as the degree of face closeness to each face in the training database.

Automatic Premature Ventricular Contraction Detection Using NEWFM (NEWFM을 이용한 자동 조기심실수축 탐지)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.378-382
    • /
    • 2006
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM). NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The two most important coefficients are selected by the non-overlap area distribution measurement method to minimize the classification rules that show PVC classification rate of 99.90%. By Presenting locations of the extracted two coefficients based on the R wave location, it is shown that PVC can be detected using only information of the two portions.

Reliability Analysis of Fuzzy Systems With Weighted Components Using Vague Sets (모호집합을 이용한 가중 구성요소를 갖는 퍼지시스템의 신뢰도 분석)

  • Cho, Sang-Yeop;Park, Sa-Joon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.979-985
    • /
    • 2006
  • In the conventional researches, the reliabilities of the fuzzy system are represented and analyzed by real values between zero and one, fuzzy numbers, intervals of confidence, etc. In this paper, we present a method to represent and analyze the reliabilities of the weighted components of the fuzzy system and the weights reflected on their importance based on vague sets defined in the universe of discourse [0, 1]. The vague set is represented as the interval consisted of the truth-membership functions and the false-membership functions, therefore it can allow the reliabilities and the weights of a fuzzy system to represent in a more flexible manner. The proposed method considers the weights of the weighted components in the fuzzy systems, its reliability analysis is more flexible and effective than the conventional methods.

A Fast Method for Finding the Optimal Threshold for Image Segmentation (영상분할의 최적 임계치를 구하는 빠른 방법)

  • 신용식;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.109-112
    • /
    • 2001
  • 영상분할에 있어서 최적의 임계치를 구하는 것은 영상을 구성하고 있는 픽셀들을 의미있는 집단으로 나누는 거와 같으며 이를 위하여 퍼지화 정도를 측정하여 최소의 퍼지화 정도를 갖는 임계치를 최적의 임계치로 설정한다. 일반적으로 소속도는 하나의 픽셀과 그 픽셀이 속한 영역의 관계로 표현될 수 있는데 소속도 계산을 위한 엔트로피로 샤논(Shannon)함수를 사용한다[1]. Liang-Kai Huang에 의하여 제안된 알고리즘은 그 수렴속도 면에 있어서 많은 문제점을 갖고 있다[2]. 본 논문에서는 이런 수렴속도를 좀더 개선하기 위하여 SPOI(Simplified Fixed Point Iteration)를 제안하고 여러 가지 실험영상을 사용하여 졔안된 논문의 우수성을 보이고자 한다. 실험결과 적절한 임계치를 구하면서도 기존의 논문보다 속도면에서 상당히 우수한 특성을 보이고 있다.

  • PDF

Fuzzy Theory and Reservoir Operation Guidelines for Agricultural Purposes (퍼지이론과 관개용 저수지의 조작)

  • 정하우;이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.45-51
    • /
    • 1991
  • The objective of this paper is to show how the fuzzy sets theory can be applied to the reservoir operation guidelines for agricultural purposes. The concepts of the theory has been resented as a new tool for the decision problems which contains fuzziness and it's application can be found in operations research, expert systems, robotics, fuzzy computers, and pattern recognition. The fuzzy control system for the reservoir operation composed of a set of reservoir operation rules and a fuzzy inference engine was built. Water demand for paddy fields, water availability, and inflow to a reservoir were selected as main factors which determine the magnitude of reservoir release. The behavior of the control system was evaluated for different level of water demand and the results seemed to be reasonable.

  • PDF

An Adaptive Network Fuzzy Inference System for the Fault Types Classification in the Distribution Lines (배전선로의 고장유형 판별을 위한 적응형 퍼지추론 시스템)

  • 정호성;신명철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • 본 논문에서는 배전선로에서 발생하는 여러 고장유형을 판별하기 위해서 적응형 퍼지추론 시스템을 적용하는 새로운 기법을 제시하였다. 배전선로의 고장과 고장유사현상 데이터를 추출하기 위해서 EMTP를 이용하여 RL부하, 아크로부하, 컨버터부하가 있는 배전계통을 구성하고 여러 형태의 고장과 고장유사현상에 대해 시뮬레이션을 하였다. 이를 통해 얻은 전류 파형으로부터 기본파성분, 영상분전류, 짝수 고조파성분의 합, 홍수 고조파성분의 합, 그리고 비정규 고조파성분의 합의 5개의 입력변수를 추출하고 학습을 통해서 각 입력변수의 소속함수의 소속도를 자동으로 결정하였다. 이 적응형 퍼지추론 시스템을 이용한 기법을 평가하기 위해서 학습시와 다른 고장상황을 모의하여 얻은 데이터와 실증시험 데이터를 이용하였다. 결과적으로 제안한 기법은 배전선로에서 발생하는 고장유형을 빠르고 정확하게 판별할 수 있었다.

  • PDF

A Modified Fuzzy Min-Max Neural Network for Pattern Classification (수정된 퍼지 최대최소 신경망을 이용한 패턴분류)

  • 최형수;정경훈;김호준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.565-567
    • /
    • 2004
  • 본 연구에서는 효과적인 패턴 분류를 위한 방법론으로서 수정된 퍼지 최대최소 신경망 모델을 제안하고 그 유용성을 고찰한다 제안된 모델에서 각 하이퍼박스는 다차원의 특징공간상에서 한 영역으로 정의되며 각 특징에 대하여 가중치 개념이 추가된 소속함수를 갖는다. 이는 기존의 FMM 신경망에서 모든 특징에 대하여 균일하게 고려되었던 특징의 상대적 중요도를 서로 다른 값으로 반영할 수 있게 한다. 본 연구에서는 제안된 모델의 동작특성 및 학습방법을 소개하며, 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.

  • PDF

Comparison Study for similarities based on Distance Measure and Fuzzy Number (거리측도를 이용한 유사도의 구성과 퍼지 넘버를 이용한 유사도와의 비교연구)

  • Lee, Sang-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The similarity measure is derived with distance measure, and the proposed similarity measure is proved to verily the usefulness. Conventional similarity measure which is constructed through fuzzy number and Center of Gravity(COG) is introduced, furthermore two similarity measures are compared through various types of membership function.