최근 페이스북이나 트위터와 같은 소셜네트워크 서비스를 포함하여 대용량의 빅데이터에 대한 처리와 분석이 중요한 이슈로 다뤄지고 있으며, 사용자들이 끊임없이 쏟아내는 데이터로 인해서 이러한 데이터들을 어떻게 다룰 것인지, 혹은 어떻게 분석하여 의미 있고, 가치 있는 것으로 가공할 것인지가 중요한 사안으로 여겨지고 있다. 이러한 빅데이터 관리 도구로써 하둡은 빅데이터의 처리와 분석에 있어서 가장 해결에 근접한 도구로 평가받고 있다. 이 논문은 하둡의 주요 구성요소인 HDFS(Hadoop Distributed File System)와 JAVA에 기반하여 제작되는 온라인 대용량 저장소 시스템의 가장 기본적인 요소인 온라인 데이터 저장소를 직접 설계하고 제작하고, 구현하여 봄으로써 대용량 저장소의 구현 방식에 대한 이슈를 다뤄보도록 한다.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.341-342
/
2014
지난 10년간 데이터의 폭발적인 증가로 우리는 빅데이터 시대를 맞이하게 되었다. 특히, 최근 몇 년 사이 소셜 네트워크의 발전으로 인해 발생하는 데이터의 양이 증가하면서, 이를 처리하기 위한 시스템으로 하둡이 등장하였다. 이전에는 저장 및 처리할 수 없었던 대용량 데이터를 오픈소스인 하둡의 등장으로 누구나가 대용량 데이터를 처리할 수 있는 시스템을 운영할 수 있게 된 것이다. 대규모 처리 분석을 위한 소프트웨어 프레임워크인 하둡은 클라우드 컴퓨팅의 대표적인 기술로 널리 사용되고 있다. 하둡은 크게 데이터의 저장을 담당하는 HDFS(Hadoop Distribute File System)와 데이터를 처리하는 맵리듀스로 나뉜다. 본 논문에서는 기존의 MapReduce와 차세대 맵리듀스로 불리는 YARN을 비교 분석하고 맵리듀스의 용도와 효율적인 활용방안을 제시한다.
The demand prediction is a critical issue for the film industry. As the social media, such as Twitter and Facebook, gains momentum of late, considerable efforts are being dedicated to prediction and analysis of hit movies based on unstructured text data. For prediction of trends found in commercially successful films, the correlations between the amount of data and hit movies may be analyzed by estimating the data variation by period while opinion mining that assigns sentiment polarity score to data may be employed. However, it is not possible to understand why the audience chooses a certain movie or which attribute of a movie is preferred by using such a quantitative approach. This has limited the efforts to identify factors driving a movie's commercial success. In this regard, this study aims to investigate a movie's attributes that reflect the interests of the audience. This would be done by extracting topic keywords that represent the contents of Twits through frequency measurement based on the collected Twitter data while analyzing responses displayed by the audience. The objective is to propose factors driving a movie's commercial success.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.5
/
pp.169-175
/
2023
This paper analyzes museum-related big data using museums and gamification using social media big data, identifies and compares the perceptions of visitors mentioned in social media, and presents ways to use gamification. Based on the collected data, this paper aims to provide data by comparing and analyzing the perception of visitors to the museum and visitors to the museum using gamification. This paper investigates the perception of visitors through social media analysis using TEXTOM, a social media analysis tool, to identify differences in perception. As a result of the analysis, it was found that compared to museums that were previously viewed in the form of exhibitions, they felt fun and interest in visiting museums using geikipication. In addition, based on the analysis results of keywords and related keywords, the perception, motivation, and type of viewing of the museum of the National Museum of Korea and the Independence Hall of Korea were confirmed. In addition, it can be seen that the sense of achievement of visitors who visited the museum using gamification is higher than that of the existing museum. It is believed that by developing and activating game-related content in future museum visits, many visitors will be able to increase their interest in the museum and feel fun and interested. The results of the study are believed to be meaningful as basic data to grasp the overall perception of visitors to the museum, and based on this, it is expected that visitors will be able to see and experience the museum in various ways.
Kim, Yong-Woo;Park, Seok-Cheon;Hong, Suk-Woo;Kim, Tae-Youb
Annual Conference of KIPS
/
2013.11a
/
pp.1042-1045
/
2013
정보기술의 발달로 전 세계에서 발생하는 사건 사고들은 실시간으로 확인 가능하며 정보의 중요성은 더욱 더 중요해지고 있다. 이런 사회 현상에 맞춰 인적자원 솔루션에서도 빅 데이터 분석 기술을 이용하여 인적자원 의사결정에 도움을 주는 기술이 필요하게 되었다. 따라서 본 논문에서는 빅 데이터 분석 기술을 이용하여 인사채용과 관련된 데이터들을 추출하고 분석하여 구직자의 적성과 능력에 맞는 직업을 예측하는 시스템을 설계하였다. 구직자 및 이직을 원하고 있는 사람들이 소셜 네트워크 서비스를 이용하면서 사용하고 있는 특정 단어와 특정 단어의 언급 빈도의 데이터를 추출하고 추출 된 데이터는 통계를 내어 데이터의 특성에 맞게 분류하여 분류된 데이터는 연관된 속성에 의해 그룹화 한다. 그룹화 된 정보를 분석하여 구직자의 적성과 능력을 고려한 직업을 예측하는 정보로 도출하여 직업을 추천 할 수 있는 예측 시스템을 설계하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2018.01a
/
pp.191-192
/
2018
우리나라는 소상공인 및 자영업에 대한 비중이 매우 높은 가운데, 대형마트 및 SSM(Super Super Market), 편의점 등 기업형 유통 판매점의 확대로 인해서 위기감이 심화되고 있다. 본 논문에서는 다양한 사람들이 무의식적으로 생성해내는 빅데이터의 특성과 많은 유동인구흐름이 많은 전통시장의 특성을 빅데이터로 분석하여 마케팅 정보까지 제공하여 전통시장에서 유익하게 사용될 수 있는 시스템을 제안한다.
The Journal of the Convergence on Culture Technology
/
v.7
no.3
/
pp.475-480
/
2021
With the rapid development of mobile, cloud computing technology and social network services, we are in the flood of huge data and realize that these large-scale data contain very precious value and important information. Big data, however, have both latent useful value and critical risks, so, nowadays, a lot of researches and applications for big data has been executed actively in order to extract useful information from big data efficiently and make the most of the potential information effectively. At this moment, the data analysis technique that can extract precious information from big data efficiently is the most important step in big data computing process. In this study, we investigate various data analysis techniques that can extract the most useful information in big data computing process efficiently, compare pros and cons of those techniques, and propose proper data analysis method that can help us to find out the best solution of the big data analysis in the peculiar situation.
Heo, Junhong;Seo, Yeeun;Lee, Seoyeong;Lee, Sang-Yong Tom
Knowledge Management Research
/
v.22
no.3
/
pp.31-53
/
2021
As a communication channel for individuals, social media is affecting various areas such as business, economy, politics, and society. One of the less-studied areas is the law. Therefore, this study collected various information from social media and analyzed its impacts on the legal decisions, especially the Supreme Court decisions in Korea. This study was conducted by compiling information from Internet news articles and public responses. We found that when the negative reactions from the public got higher, the trial duration until the supreme court making the final decisions became shorter. However, we were not able to find the significant relationship between social media reactions and dismissal of appeal nor annulment. Our study would contribute to the information systems and knowledge management research in a sense that the social analytics is applied to the area of legal decisions, instead of using conventional qualitative study methodology. Our study is also meaningful to the practitioners because that big data analytical business can be applied to the field of law by creating a new database for the emerging legal technology. Finally, law makers can think of a better way to standardize the legal decision process to minimize the reverse effects from social media.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.1
/
pp.76-81
/
2018
The Internet of Things (IoT), which is emerging as a future economic growth engine, has been actively introduced in areas close to our daily lives. However, there are still IoT security threats that need to be resolved. In particular, with the spread of smart homes and smart cities, an explosive amount of closed-circuit televisions (CCTVs) have been installed. The Internet protocol (IP) information and even port numbers assigned to CCTVs are open to the public via search engines of web portals or on social media platforms, such as Facebook and Twitter; even with simple tools these pieces of information can be easily hacked. For this reason, a big-data analytics system is needed, capable of supporting quick responses against data, that can potentially contain risk factors to security or illegal websites that may cause social problems, by assisting in analyzing data collected by search engines and social media platforms, frequently utilized by Internet users, as well as data on illegal websites.
Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.77-78
/
2016
빅 데이터의 데이터 수집 및 분석 기술에 대한 연구는 컴퓨터 과학 분야에서 각광 받고 있다. 또한 소셜 미디어로 인한 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 그러나 빅 데이터 개념을 기반으로 하는 하둡과 스파크는 유즈케이스에 따라 성능이 크게 달라진다는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 하둡의 맵리듀스를 줄이고 아파치 스파크를 이용한 빅 데이터 분석을 위하여 머신러닝 알고리즘인 K-Means 알고리즘을 이용하여 프로세싱 모델의 성능을 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.