• Title/Summary/Keyword: 소셜 리뷰

Search Result 55, Processing Time 0.022 seconds

Social Big Data Analysis for Franchise Stores

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.39-46
    • /
    • 2021
  • When conducting social big data analysis for franchise stores, reviews of multiple branches of a franchise can be collected together, from which analysis results can be distorted significantly. To improve its accuracy, it should be possible to filter reviews of other branches properly which are not subject to the analysis. This paper presents a method for social big data analysis which reflects characteristics of franchise stores. The proposed method consists of search key configuration and review filtering. For the former, the open data provided by Small Business Promotion Agency is used to extract region names for collecting reviews more accurately. For the latter, open search APIs provided by Naver or Kakao are used to obtain franchise branch information for filtering reviews of other branches that are not subject to analysis. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that the accuracy of the proposed review filtering was 93.6% on the average.

Improving Accuracy of Noise Review Filtering for Places with Insufficient Training Data

  • Hyeon Gyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • In the process of collecting social reviews, a number of noise reviews irrelevant to a given search keyword can be included in the search results. To filter out such reviews, machine learning can be used. However, if the number of reviews is insufficient for a target place to be analyzed, filtering accuracy can be degraded due to the lack of training data. To resolve this issue, we propose a supervised learning method to improve accuracy of the noise review filtering for the places with insufficient reviews. In the proposed method, training is not performed by an individual place, but by a group including several places with similar characteristics. The classifier obtained through the training can be used for the noise review filtering of an arbitrary place belonging to the group, so the problem of insufficient training data can be resolved. To verify the proposed method, a noise review filtering model was implemented using LSTM and BERT, and filtering accuracy was checked through experiments using real data collected online. The experimental results show that the accuracy of the proposed method was 92.4% on the average, and it provided 87.5% accuracy when targeting places with less than 100 reviews.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.87-94
    • /
    • 2020
  • Social reviews such as SNS feeds and blog articles have been widely used to extract keywords reflecting opinions and complaints from users' perspective, and often include proper nouns or new words reflecting recent trends. In general, these words are not included in a dictionary, so conventional morphological analyzers may not detect and extract those words from the reviews properly. In addition, due to their high processing time, it is inadequate to provide analysis results in a timely manner. This paper presents a method for efficient keyword extraction from social reviews based on the notion of cohesion scoring. Cohesion scores can be calculated based on word frequencies, so keyword extraction can be performed without a dictionary when using it. On the other hand, their accuracy can be degraded when input data with poor spacing is given. Regarding this, an algorithm is presented which improves the existing cohesion scoring mechanism using the structure of a word tree. Our experiment results show that it took only 0.008 seconds to extract keywords from 1,000 reviews in the proposed method while resulting in 15.5% error ratio which is better than the existing morphological analyzers.

Research on Sentiment Analysis in Social Media App Reviews: Focusing on Instagram (소셜 미디어 앱 리뷰에서의 감성 분석 연구: 인스타그램 중심으로)

  • Wen-Qi Li;Yu-Hang Wu
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.69-80
    • /
    • 2024
  • This study aimed to gain valuable insights into the performance and user satisfaction of applications (apps) through a thorough analysis of Instagram user reviews collected from Google Play. The study utilized text mining and sentiment analysis techniques and systematically identified emotions and opinions embedded in user reviews to deeply understand the areas of improvement and user experiences of the app. It analyzes how Instagram reviews reflect the diverse experiences of users and how they reveal the strengths and weaknesses of the app. For this purpose, sentiment analysis using the naive Bayes algorithm was conducted, and the results were expected to aid in the improvement of Instagram's services. In addition, the study aimed to assist developers in better understanding and utilizing user feedback, ultimately contributing to enhanced user satisfaction. This study explored the complex relationship between social media usage patterns and user opinions by seeking ways to provide a better user experience through these insights.

The Effect of Online Word of Mouth on Movie Sales: Moderating Roles of Types of Social Media (온라인 구전이 영화매출에 미치는 영향: 소유미디어와 획득미디어의 조절효과를 중심으로)

  • Jung Won Lee;Cheol Park
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.29-50
    • /
    • 2019
  • Social media is divided into Owned Media, operated by companies according to information sources, and Earned Media, which third parties produce contents. Social media research developing the logic that brand-related content in social media increases awareness of potential customers and positively changes brand attitudes, resulting in increased sales and business performance. However, there are limitations in previous researches that can not fully explain the difference of media synergy effect according to the information source of social media. it is very important for the consumer to integrate media management because consumers are more likely to choose appropriate media information for the information needed at each decision making stage. The purpose of this study is to analyze the effect of eWOM of review site and social media (owned media and earned media) on movie sales. To do this, we collected 3,589 review data from films released in 2017. The results of the study showed that eWOM of review site, social media (owned media and earned media) had a positive effect on movie sales. However, it was found that the effect of moderating eWOM of review site was different between the owned media and the earend media.

Development of Detection of Adverse Drug Reactions based on Named Entity Recognition and Keyword Network Analysis (개체명 인식과 키워드 네트워크 분석을 활용한 약물 이상 반응 탐지 시스템 개발)

  • Chae-Yeon Lee;Hyon Hee Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.670-672
    • /
    • 2023
  • 본 논문에서는 소셜 미디어 약물 리뷰 데이터로부터 약물 이상 반응을 탐지하는 모델인 FC-BERT 를 기반으로 소셜 네트워크 분석을 활용하여 웹 애플리케이션을 구현하였다. FC-BERT 모델을 거쳐 나온 개체명 인식 결과 중에 같은 의미를 가진 서로 다른 약물 이상 반응 표현들을 MedDRA 부작용 사전을 참고하여 하나의 MedDRA 용어로 표준화하여 매핑했다. 해당 결과에 소셜 네트워크 분석 기법을 적용하여 생성한 상위 15 개의 ADR 동시 출현 그래프를 상위 30 개의 워드 클라우드와 함께 시각화하여 보여주는 웹 애플리케이션을 개발했다. 동시 출현 그래프는 가장 많은 리뷰에서 동시에 나타나는 ADR 쌍을 보여준다. 본 논문에서 제안한 웹 애플리케이션은 사람마다 다르게 나타나는 다양한 약물 이상 반응을 사용자에게 좀 더 접근성이 좋게 제공할 수 있을 것으로 보인다.

A Technique for Product Effect Analysis Using Online Customer Reviews (온라인 고객 리뷰를 활용한 제품 효과 분석 기법)

  • Lim, Young Seo;Lee, So Yeong;Lee, Ji Na;Ryu, Bo Kyung;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.259-266
    • /
    • 2020
  • In this paper, we propose a novel scheme for product effect analysis, termed PEM, to find out the effectiveness of products used for improving the current condition, such as health supplements and cosmetics, by utilizing online customer reviews. The proposed technique preprocesses online customer reviews to remove advertisements automatically, constructs the word dictionary composed of symptoms, effects, increases, and decreases, and measures products' effects from online customer reviews. Using Naver Shopping Review datasets collected through crawling, we evaluated the performance of PEM compared to those of two methods using traditional sentiment dictionary and an RNN model, respectively. Our experimental results shows that the proposed technique outperforms the other two methods. In addition, by applying the proposed technique to the online customer reviews of atopic dermatitis and acne, effective treatments for them were found appeared on online social media. The proposed product effect analysis technique presented in this paper can be applied to various products and social media because it can score the effect of products from reviews of various media including blogs.

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.145-153
    • /
    • 2020
  • Recently, keyword extraction from social big data has been widely used for the purpose of extracting opinions or complaints from the user's perspective. Regarding this, our previous work suggested a method to improve accuracy of keyword extraction based on the notion of cohesion scoring, but its accuracy can be degraded when the number of input reviews is relatively small. This paper presents a method to resolve this issue by applying simplified morphological analysis as a postprocessing step to extracted keywords generated from the algorithm discussed in the previous work. The proposed method enables to add analysis rules necessary to process input data incrementally whenever new data arrives, which leads to reduction of a dictionary size and improvement of analysis efficiency. In addition, an interactive rule adder is provided to minimize efforts to add new rules. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that error ratio was reduced from 10% to 1% by applying our method and it took 450 milliseconds to process 5,000 reviews, which means that keyword extraction can be performed in a timely manner in the proposed method.

Enhancing the Performance of Recommender Systems Using Online Review Clusters (온라인 리뷰 클러스터를 이용한 추천 시스템 성능 향상)

  • Noh, Giseop;Oh, Hayoung;Lee, Jaehoon
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.126-133
    • /
    • 2018
  • The recommender system (RS) has emerged as a solution to overcome the constraints of excessive information provision and to maximize profit and reputation for information providers. Although the RS can be implemented with various approaches, there is no study on how to appropriately utilize the information generated from the review of the recommended object. We propose a method to improve the performance of RS by using cluster information generated from online review. We implemented the proposed method and experimented with real data, and confirmed that the performance is significantly improved compared to the existing approaches.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.