• Title/Summary/Keyword: 소셜 러닝

Search Result 89, Processing Time 0.021 seconds

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

A study on Survive and Acquisition for YouTube Partnership of Entry YouTubers using Machine Learning Classification Technique (머신러닝 분류기법을 활용한 신생 유튜버의 생존 및 수익창출에 관한 연구)

  • Hoik Kim;Han-Min Kim
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.57-76
    • /
    • 2023
  • This study classifies the success of creators and YouTubers who have created channels on YouTube recently, which is the most influential digital platform. Based on the actual information disclosure of YouTubers who are in the field of science and technology category, video upload cycle, video length, number of selectable multilingual subtitles, and information from other social network channels that are being operated, the success of YouTubers using machine learning was classified and analyzed, which is the closest to the YouTube revenue structure. Our findings showed that neural network algorithm provided the best performance to predict the success or failure of YouTubers. In addition, our five factors contributed to improve the performance of the classification. This study has implications in suggesting various approaches to new individual entrepreneurs who want to start YouTube, influencers who are currently operating YouTube, and companies who want to utilize these digital platforms. We discuss the future direction of utilizing digital platforms.

The Differential Impacts of Positive and Negative Emotions on Travel-Related YouTube Video Engagement (유튜브 여행 동영상의 긍정적 감정과 부정적 감정이 사용자 참여에 미치는 영향)

  • Heejin Kim;Hayeon Song;Jinyoung Yoo;Sungchul Choi
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.1-19
    • /
    • 2023
  • Despite the growing importance of video-based social media content, such as vlogs, as a marketing tool in the travel industry, there is limited research on the characteristics that enhance engagement among potential travelers. This study explores the influence of emotional valence in YouTube travel content on viewer engagement, specifically likes and comments. We analyzed 4,619 travel-related YouTube videos from eight popular tourist cities. Using negative binomial regression analysis, we found that both positive and negative emotions significantly influence the number of likes received. Videos with higher positive emotions as well as negative emotions receive more likes. However, when it comes to the number of comments, only negative emotions showed a significant positive influence, while positive emotions had no significant impact. These findings offer valuable insights for marketers seeking to optimize engagement strategies on YouTube, considering the unique nature of travel products. Further research into the effects of specific emotions on engagement is warranted to improve marketing strategies. This study highlights the powerful impact of emotions on viewer engagement in the context of social media, particularly on YouTube.

Apache Spark and Map Reduce with Performance Analysis using K-Means (K-means를 이용한 아파치 스파크 및 맵 리듀스 성능 분석)

  • Jung, Young-Gyo;Jung, Dong-Young;Song, Jun-Seok;You, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.77-78
    • /
    • 2016
  • 빅 데이터의 데이터 수집 및 분석 기술에 대한 연구는 컴퓨터 과학 분야에서 각광 받고 있다. 또한 소셜 미디어로 인한 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 그러나 빅 데이터 개념을 기반으로 하는 하둡과 스파크는 유즈케이스에 따라 성능이 크게 달라진다는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 하둡의 맵리듀스를 줄이고 아파치 스파크를 이용한 빅 데이터 분석을 위하여 머신러닝 알고리즘인 K-Means 알고리즘을 이용하여 프로세싱 모델의 성능을 비교한다.

  • PDF

A Comparative Study on Sentiment Analysis Based on Psychological Model (감정 분석에서의 심리 모델 적용 비교 연구)

  • Kim, Haejun;Do, Junho;Sun, Juoh;Jeong, Seohee;Lee, Hyunah
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.450-452
    • /
    • 2020
  • 기술의 발전과 함께 사용자에게 가까이 자리 잡은 소셜 네트워크 서비스는 이미지, 동영상, 텍스트 등 활용 가능한 데이터의 수를 폭발적으로 증가시켰다. 작성자의 감정을 포함하고 있는 텍스트 데이터는 시장 조사, 주가 예측 등 다양한 분야에서 이용할 수 있으며, 이로 인해 긍부정의 이진 분류가 아닌 다중 감정 분석의 필요성 또한 높아지고 있다. 본 논문에서는 딥러닝 기반 감정 분류에 심리학 이론의 기반 감정 모델을 활용한 결합 모델과 단일 모델을 비교한다. 학습을 위해 AI Hub에서 제공하는 데이터와 노래 가사 데이터를 복합적으로 사용하였으며, 결과에서는 대부분의 경우에 결합 모델이 높은 결과를 보였다.

  • PDF

Swear Word Detection through Convolutional Neural Network (딥러닝 기반 욕설 탐지)

  • Kim, Yumin;Gang, Hyobin;Han, Suhyeun;Jeong, Hieyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.685-686
    • /
    • 2021
  • 개인의 소셜미디어 활동이 활발해지면서 익명성을 악용하여 타인에게 욕설을 주저없이 해버리는 사용자가 늘고 있다. 본 연구는 욕설이 난무하는 채팅창에서 욕설 데이터를 크롤링하여 데이터셋을 구축하여 컨볼루션 네트워크로 학습시켰을 때 욕설을 탐지하고, 전체 문장에서 그 탐지한 욕설의 위치를 파악하여 블러링 처리를 할 수 있는지를 확인하는 것을 목적으로 한다. 전처리 작업으로 한글과 공백을 제외하고 형태소 단위로 토큰화한 후 불용어를 제거해서 패딩처리를 하였다. 학습 모델로는 1차원 컨볼루션을 사용하여 수집한 데이터의 80%를 훈련에 사용하고 나머지 20%를 테스트에 사용하였다. 키워드를 이용한 단순 분류 모델과 비교하였을 때, 본 연구에서 이용한 모델이 약 14% 정확도가 향상된 것을 확인할 수 있었다. 테스트에서 전체 문장에서 욕설이 포함되었을 때 욕설과 그 위치 정보를 잘 획득하는 것도 확인할 수 있었다.

Twitter Sentiment Analysis for Natural Language Processing (자연어 처리를 위한 트위터 감정 분석)

  • Li, Ang;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.457-458
    • /
    • 2022
  • 인터넷 시대에 소셜 미디어는 사람들의 삶에 완전히 침투했다. 많은 사용자 기반을 보유한 성숙한 온라인 플랫폼 중 하나인 Twitter를 통해 사용자는 최신 뉴스, 삶의 경험 및 흥미로운 삶의 이야기를 독립적으로 게시할 수 있다. 하지만 때론 부정적인 뉘앙스를 풍기며 기업이나 개인의 브랜드에 영향을 미치며 이익을 훼손하는 경우가 있기 때문에 욕설을 식별해 트위터 발신을 차단할 필요가 있다. 이 기사의 가장 큰 혁신은 Twitter 데이터를 사용하여 다양한 방법을 동시에 비교한다는 것입니다. 더 많은 데이터를 처리할수록 딥 러닝을 시도하면 좋은 결과를 얻을 수 있다. Transformer 분류기를 통합하여 최상의 결과를 얻었다

An Experimental Evaluation of Box office Revenue Prediction through Social Bigdata Analysis and Machine Learning (소셜 빅데이터 분석과 기계학습을 이용한 영화흥행예측 기법의 실험적 평가)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2017
  • With increased interest in the fourth industrial revolution represented by artificial intelligence, it has been very active to utilize bigdata and machine learning techniques in almost areas of society. Also, such activities have been realized by development of forecasting systems in various applications. Especially in the movie industry, there have been numerous attempts to predict whether they would be success or not. In the past, most of studies considered only the static factors in the process of prediction, but recently, several efforts are tried to utilize realtime social bigdata produced in SNS. In this paper, we propose the prediction technique utilizing various feedback information such as news articles, blogs and reviews as well as static factors of movies. Additionally, we also experimentally evaluate whether the proposed technique could precisely forecast their revenue targeting on the relatively successful movies.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Instagram image classification with Deep Learning (딥러닝을 이용한 인스타그램 이미지 분류)

  • Jeong, Nokwon;Cho, Soosun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.61-67
    • /
    • 2017
  • In this paper we introduce two experimental results from classification of Instagram images and some valuable lessons from them. We have tried some experiments for evaluating the competitive power of Convolutional Neural Network(CNN) in classification of real social network images such as Instagram images. We used AlexNet and ResNet, which showed the most outstanding capabilities in ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2012 and 2015, respectively. And we used 240 Instagram images and 12 pre-defined categories for classifying social network images. Also, we performed fine-tuning using Inception V3 model, and compared those results. In the results of four cases of AlexNet, ResNet, Inception V3 and fine-tuned Inception V3, the Top-1 error rates were 49.58%, 40.42%, 30.42%, and 5.00%. And the Top-5 error rates were 35.42%, 25.00%, 20.83%, and 0.00% respectively.