• Title/Summary/Keyword: 소셜커뮤니케이션

Search Result 181, Processing Time 0.026 seconds

Social Media as a Platform of Collective Intelligence : An Exploratory Analysis Based on Communication Types (집단지성 플랫폼으로서의 소셜미디어 : 커뮤니케이션 유형별 실험 분석)

  • Kim, Tae-Won;Kim, Sang-Wook
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.127-149
    • /
    • 2013
  • Is the social web environment in which production, distribution and consumption of information occurs from users an environment where manifestation of collective intelligence is easily made? Or is the social web environment a condition that incites people to depend on the groupthink due to biased information? It is important to conduct empirical studies on the possibility of social media as a tool of collective intelligence under the situation where conflicting opinions prevail. However, most of the existing studies related to this were limited to an exploratory research rather than an empirical research. In this regard, this study attempted to examine if the social media can perform a part as a platform of the collective intelligence empirically. Based on the experimental results, it can be safely said that the communication methods of social media showed its usefulness in both 'intellectual capacity of the group' and 'problem-solving skill of the group.'

스마트 TV

  • Go, Hun
    • It's Smart Media
    • /
    • v.3 no.4
    • /
    • pp.22-28
    • /
    • 2014
  • 스마트TV는 TV와 휴대폰, 그리고 컴퓨터 등 여러 개의 스크린을 활용하여 동영상을 볼 수 있는 TV를 의미한다. 스마트TV는 또한 콘텐츠를 인터넷에서 실시간으로 다운받아 볼 수 있고, 스포츠 결과, 사건 사고, 다른 나라의 소식, 그리고 이메일 등을 바로 확인할 수 있는 복합적인 커뮤니케이션 시스템이다. 반면에 이전의 TV는 단순한 방송을 시청하는 도구로 사용되었지만, 최근에 등장한 스마트TV는 방송을 보는 것과 참여하는 것, 그리고 선택하는 것을 포함하고 있다. 즉 TV에 네트워크 기능을 추가하며, 각종 앱을 설치하고, 이러한 앱들을 통해서 정보검색/물건구매, VOD 시청, 인터넷 게임, 소셜네트워크 사용 등 다양한 기능을 활용한다. 본 기사에서는 스마트TV 기술, 구성요소, 그리고 각 제조사별 특징을 분석하고, 스마트TV의 발전 방향 등 스마트TV의 현황 등에 대해서 정리한다.

  • PDF

Design of Smart-Pergola System Based on Augment Reality (증강현실 기반 스마트퍼걸러(Smart-Pergola) 시스템의 설계)

  • Ji, Geun-Seok;Min, Byoung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.11-12
    • /
    • 2012
  • 현재 교육 융 복합 콘텐츠 서비스는 사용자의 용도와 목적에 대응하지 못하는 고정된 사용자 인터페이스를 제공하여 사용자의 필요에 의한 것이 아닌 제공자 기준의 단방향 서비스만을 제공함에 따라 서로 소통은 이루어졌으나 직접적인 커뮤니케이션이 불가능하다는 단점이 있다. 이러한 단점을 보완하고자 본 논문에서 제시한 스마트퍼걸러(Smart-Pergola) 시스템은 증강현실의 주요 기술인 디스플레이기술, 마커인식기술, 영상합성기술을 적용하여 사용자로 하여금 보다 친숙한 현실감 속에서 상호작용이 가능하며, 자발적인 학습참여 유도, 부모와 자녀사이의 교감학습증대 등 양방향 소셜 네트워크를 구축하여 적극적이고 활동적인 참여와 정보교류의 장이 될 수 있도록 시스템을 설계하였다.

  • PDF

A Study on the Utilization and Adverse effects of SNS (SNS 활용 및 역기능에 관한 연구)

  • Kang, Min-Sik;Song, Eun-jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.871-872
    • /
    • 2013
  • 최근 스마트폰의 급속한 보급에 따라 트위터, 페이스북과 같은 실시간 SNS(Social Network Service)가 폭발적으로 성장하고 있다. 본래 SNS는 지인과의 소통을 위한 온라인 커뮤니티로 출발했으나 지금은 새로운 커뮤니케이션으로 마케팅, 미디어, 커머스 등 다양한 영역의 플랫폼으로 진화하며, 그 파급력을 이어가고 있다. SNS, 소셜 미디어 시대를 맞이하여 소비자가 수동적 입장에서 능동적 입장으로 변경되고 있는 상황에서 블로그, 카페, 트위터 등 에서의 평가를 통한 고객 피드백 정보에 따라 서비스 제공자의 판매율이 많은 영향을 받고 있다. 따라서 효율적인 기업경영을 위해서는 SNS 등을 통한 고객의 목소리를 분석하는 작업과 그것을 기반으로 고객만족도 평가모형에 대한 연구가 필요하다. 본 논문에서는 이러한 SNS를 이용한 활용분야에 대해서 고찰해 보고 SNS가 점차 확대됨에 따라 발생할 수 있는 SNS 환경에서의 역기능은 어떤 것이 있는지 살펴보고 대응방안을 제안한다.

  • PDF

A Pattern on Keyword of the Creative Economy through Utilizing Big Data Analysis (빅 데이터 분석을 활용한 창조경제 키워드에 대한 패턴)

  • Jin, Chan-Yong;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.143-144
    • /
    • 2016
  • 빅 데이터 분석은 기존 데이터베이스 관리 도구로부터 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 말한다. 또한, 대량의 정형 또는 비정형 데이터 집합으로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 대부분의 빅 데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 해당된다. 글로벌 리서치 기관들은 빅 데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅 데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅 데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 창조경제 키워드 의미를 분석하고자 한다. 또한, 분석결과를 바탕으로 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

A Pattern Study on Keyword of the Collagen through Utilizing Big Data Analysis (빅데이터 분석을 활용한 콜라겐 키워드에 대한 패턴)

  • Yu, Ok-Kyeong;Jin, Chan-Yong;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.124-125
    • /
    • 2016
  • 빅데이터 분석은 기존 데이터베이스 관리 도구로부터 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 말한다. 또한 대량의 정형 또는 비정형 데이터 집합으로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 해당된다. 글로벌 리서치 기관들은 빅데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 가치 창출을 위한 노력을 기울이고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 콜라겐 키워드에 대한 의미를 분석하고자 한다. 또한 분석결과를 바탕으로 실무적 시사점을 제시하고자 한다.

  • PDF

Study on Mixed Reality and Brand Storytelling (혼합현실 기술을 이용한 브랜드 스토리텔링에 대한 고찰)

  • Kim, Jung Kyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.205-210
    • /
    • 2019
  • Alongside the development of communication technologies such as smart phone, 5G, advertisements which have been regarded as nexus of marketing behaviors are treated as surplus entities in our society now. Ad marketers have been focusing on storytelling advertisements via SNS or similar web-services. We are facing another big media changes such as Virtual Reality, Augmented Reality. Especially the current study probes Mixed Reality as the potential key of new storytelling brand marketing with discussing directions and insights based on the narrative transportation theory.

Development of Smartphone Game Application using Android (Android를 이용한 스마트폰 게임 어플리케이션)

  • Kim, Kyungha;Lee, Aeri;Choi, Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.376-377
    • /
    • 2013
  • 스마트폰이 도입된지 불과 몇 년만에 모바일 컴퓨팅은 이제 생활과 밀접한 다양한 콘텐츠를 소비하고 공유할 수 있는 공간이자 도구가 되었다. 이제 우리의 일상은 스마트 폰의 어플리케이션이나 SNS 등을 이용해 보다 합리적인 정보 탐색을 위하여 얻고자 하는 정보를 검색하고 실시간으로 공유한다. 최근 선호하는 스마트폰 어플리케이션은 오락, 유틸리티, 소셜 네트워크의 비중이 크다. 본 논문에서는 이러한 스마트 폰의 흐름에 발 맞춰, Android기반 게임 애플리케이션을 구현하고자 한다. 본 애플리케이션은 컴퓨터에서만 즐길 수 있던 게임에서 벗어나 보다 접근성이 편리한 스마트폰에서 실행할 수 있을 뿐 아니라 커뮤니케이션 인프라(별점 주기, 랭킹)와 item shop 기능을 제공한다. 본 연구에서는 더블버퍼링, 각종 센서, Surface View 등을 활용하여 스마트폰 게임 애플리케이션을 제작한다.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

A Comparative Study of Information Delivery Method in Networks According to Off-line Communication (오프라인 커뮤니케이션 유무에 따른 네트워크 별 정보전달 방법 비교 분석)

  • Park, Won-Kuk;Choi, Chan;Moon, Hyun-Sil;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.131-142
    • /
    • 2011
  • In recent years, Social Network Service, which is defined as a web-based service that allows an individual to construct a public or a semi-public profile within a bounded system, articulates a list of other users with whom they share connections, and traverses their list of connections. For example, Facebook and Twitter are the representative sites of Social Network Service, and these sites are the big issue in the world. A lot of people use Social Network Services to connect and maintain social relationship. Recently the users of Social Network Services have increased dramatically. Accordingly, many organizations become interested in Social Network Services as means of marketing, media, communication with their customers, and so on, because social network services can offer a variety of benefits to organizations such as companies and associations. In other words, organizations can use Social Network Services to respond rapidly to various user's behaviors because Social Network Services can make it possible to communicate between the users more easily and faster. And marketing cost of the Social Network Service is lower than that of existing tools such as broadcasts, news papers, and direct mails. In addition, Social network Services are growing in market place. So, the organizations such as companies and associations can acquire potential customers for the future. However, organizations uniformly communicate with users through Social Network Service without consideration of the characteristics of the networks although networks have different effects on information deliveries. For example, members' cohesion in an offline communication is higher than that in an online communication because the members of the offline communication are very close. that is, the network of the offline communication has a strong tie. Accordingly, information delivery is fast in the network of the offline communication. In this study, we compose two networks which have different characteristic of communication in Twitter. First network is constructed with data based on an offline communication such as friend, family, senior and junior in school. Second network is constructed with randomly selected data from users who want to associate with friends in online. Each network size is 250 people who divide with three groups. The first group is an ego which means a person in the center of the network. The second group is the ego's followers. The last group is composed of the ego's follower's followers. We compare the networks through social network analysis and follower's reaction analysis. We investigate density and centrality to analyze the characteristic of each network. And we analyze the follower's reactions such as replies and retweets to find differences of information delivery in each network. Our experiment results indicate that density and centrality of the offline communicationbased network are higher than those of the online-based network. Also the number of replies are larger than that of retweets in the offline communication-based network. On the other hand, the number of retweets are larger than that of replies in the online based network. We identified that the effect of information delivery in the offline communication-based network was different from those in the online communication-based network through experiments. So, you configure the appropriate network types considering the characteristics of the network if you want to use social network as an effective marketing tool.