• Title/Summary/Keyword: 소성변형거동

Search Result 482, Processing Time 0.026 seconds

Assessment of Ductility and Plastic Hinge Region of Reinforced Concrete Multi-Column Bent (2주형 다주교각의 연성도 및 소성힌지 영역에 관한 연구)

  • Byun, Soon-Joo;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.37-45
    • /
    • 2006
  • In this study, displacement ductility capacity and plastic hinge regions of reinforced concrete multi-column bent with different transverse reinforcement ratio are investigated. The ductility increases remarkably as transverse reinforcement ratio increase and the multi-column bent loaded along transverse direction is more ductile. The plastic hinge length for special detailing requirements of transverse reinforcement is estimated. For high target ductility, plastic hinge length for confinement should be extended with increased transverse reinforcement ratio. The plastic hinge length of multi-column bent loaded along transverse direction is shorter than that along longitudinal direction, because of the different moment distribution.

대형 강괴의 업셋팅공정시 기공압착에 관한 연구

  • Park, Chi-Yong;Jo, Jong-Rae;Yang, Dong-Yeol;Kim, Dong-Jin;Park, Il-Su
    • Transactions of Materials Processing
    • /
    • v.1 no.2
    • /
    • pp.20-31
    • /
    • 1992
  • 대형 강괴의 업셋팅 공정은 주조 조직의 방향성을 없애고, 코깅작업의 효율을 향상시키기 위한 충분한 단조비를 확보하기 위하여 필요한 공정이다. 공정에 영향을 주는 인자로써 상부 금형의 형상을 변화시켜 가면서 해석을 수행하였다. 극단적인 긴 파이프성 기공의 변형거동과 중심부에서 높이에 따른 원형기공의 닫힘거동 및 압하율과 기공폐쇄 정도를 관찰하였다. 충분한 단조비를 얻고 기공의 닫힘 및 압착을 이루기 위한 적절한 압셋팅 다이의 선택 및 업셋팅 공정을 예측하여 공정개선에 기여하고자 한다.

  • PDF

Analysis of Microscopic Plastic Behaviors of metals considering slip deformation of crystals(I) (결정의 슬립을 고려한 금속의 미시적 소성변형거동 해석(I))

  • 김정석;정기조;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.55-61
    • /
    • 1996
  • Finite element calculations are performed for crystalline solids subjected to plane strain tensile loading. Using Asaro's double slop model, shearband developments in single crystals are analyzed. The effect of various rate sensitivities and latent hardening parameters on microscopic plastic behavior was clarified. Moreover the deformation behavior of polycystals which have grain boundaries was compared to that of single crystals.

  • PDF

Deformation Behaviors of Materials under Nanoindentation and Their Simulation by Three Dimensional FEM Analysis (재료의 나노압입변형과 그에 대한 3차원 FEM분석)

  • 김지수;양현윤;김봉섭;윤존도;조상봉
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.38-38
    • /
    • 2003
  • 최근 나노기술의 발달과 더불어 나노재료에 대한 특성평가 요구가 높아지고 있고, 따라서 나노스케일로 재료의 기계적 거동을 분석할 수 있는 나노인덴테이션 기법이 심도있게 연구되고 있다. 본 연구에서는 나노인덴테이션을 이용하여 여러 가지 재료의 탄성 소성 변형 거동을 관찰 조사하고 이를 다시 유한요소법(FEM)으로 모사하여 해석하였다. 나노인덴테이션으로 재료 표면에 압입하여 탄소성 변형을 일으켰으며 이때의 가하중과 변형깊이를 측정하여 하중-변형 곡선을 얻었다. 매우 작은 접촉응력 조건하에서는 탄성변형의 비율이 매우 높았는데 하중-변형 곡선으로부터 재료의 나노 경도와 탄성 계수값을 얻을 수 있었다. 실험적으로 얻은 하중-변형 곡선을 3 차원의 유한요소법(FEM)을 이용하여 모사하였는데 상호간에 매우 근접한 결과를 얻을 수 있었다. 이 때 압자의 모양, 압입 깊이, 재료의 종류, 둥을 변수로 하여 여러 가지 조건하에서 압입실험을 하였으며 그 결과를 유한요소법으로 모사하였다.

  • PDF

Seismic Improvement of Staggered Truss Systems using Buckling Restrained Braces (비좌굴 가새를 이용한 스태거드 트러스 시스템의 내진성능향상)

  • Kim, Jin-Koo;Lee, Joon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper the seismic performances of 4, 10, and 30-story staggered truss systems (STS) were evaluated by observing the force-displacement relationship up io failure. The results were compared with the seismic performance of conventional moment resisting frames and braced frames. According to the analysis results, the STS showed relatively satisfactory lateral load resisting capability. However, in the mid- to high-rise STS, plastic hinges formed first at the chords were transferred to vertical members of the vierendeel panels, which formed a week link and subsequently leaded to brittle collapse of the structure. Therefore to enhance the ductility of STS it would be necessary to reinforce the vertical bracing members of the virendeel panels so that the plastic hinges, once toned in cord members of a virendeel panel, spread out to virendeel panels of neighboring stories.

Characteristics of Hysteretic Behavior of Circular Steel Column using SM490 for Loading Rate (재하속도에 따른 SM490강재 원형강기둥의 이력거동 특성)

  • Jang, Gab Chul;Chang, Kyong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.935-941
    • /
    • 2006
  • The hysteretic behavior of steel structure under cyclic and dynami loading such as earthquake is different to that under static loading. Because structural steels on dynamic deformation is different to static deformation with respect with mechanical characteristics and stress-strain relationship. Therefore, to accurately predict the hysteretic behavior of steel structures such as circular steel columns under cyclic and dynamic loading, the difference of loading carrying capacity and deformation according to loading rate, assumed static and dynamic deformation state, must be investigated. In this study, numerical analyses of circular steel column using SM490 for change of loading rate and diameter-thickness ratio(D/t) were carried out by using three-dimensional elastic-plastic finite element analysis and dynamic cyclic plasticity model of SM490 developed by the authors. Characteristics of hysteretic behavior of circular steel column using SM490, load carrying capacity and energy dissipation ratio, were clarified by analysis results.

Strain Rate-dependent Model for Anisotropic Cohesive Soils (비등방성 점성토에 있어서 변형률속도 의존적 구성모델)

  • Kim, Dae-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The appropriate description of the stress-anisotropy and time-dependent behavior of cohesive soils is very important in representing the real soil behavior. In this study, two constitutive relations have been incorporated based on the generalized viscous theory: one is the plastic constitutive relation adopted to capture the stress-anisotropy with a few model parameters; the other is the rate-dependent constitutive relation adopted to describe the strain rate-dependent behavior, an important time-dependent behavior in cohesive soils. The incorporated and proposed constitutive model has relatively a few model parameters and their values need not to be re-evaluated at different strain rates. The proposed model has been verified and investigated with the anisotropic triaxial test results obtained by using the artificial homogeneous specimens.

Analysis of Plastic Deformation Behavior according to Crystal Orientation of Electrodeposited Cu Film Using Electron Backscatter Diffraction and Crystal Plasticity Finite Element Method (전자 후방 산란 분석기술과 결정소성 유한요소법을 이용한 전해 도금 구리 박막의 결정 방위에 따른 소성 변형 거동 해석)

  • Hyun Park;Han-Kyun Shin;Jung-Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • Copper electrodeposition technology is essential for producing copper films and interconnects in the microelectronics industries including semiconductor packaging, semiconductors and secondary battery, and there are extensive efforts to control the microstructure of these films and interconnects. In this study, we investigated the influence of crystallographic orientation on the local plastic deformation of copper films for secondary batteries deformed by uniaxial tensile load. Crystallographic orientation maps of two electrodeposited copper films with different textures were measured using an electron backscatter diffraction (EBSD) system and then used as initial conditions for crystal plasticity finite element analysis to predict the local plastic deformation behavior within the films during uniaxial tension deformation. Through these processes, the changes of the local plastic deformation behavior and texture of the films were traced according to the tensile strain, and the crystal orientations leading to the inhomogeneous plastic deformation were identified.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.