• Title/Summary/Keyword: 소백산편마암복합체

Search Result 13, Processing Time 0.025 seconds

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF

Metamorphism of the Hongjesa granite and the adjacent metasedimentary rocks(Magmatism and metamorphism of the Proterozoic in the northeastern part of Korea) (홍제사 화강암과 주변 변성퇴적암류의 변성작용 (한국 북동부지역의 원생대의 화성활동과 변성작용))

  • Jeongmin Kim;Moonsup Cho;Hyung Shik Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.94-108
    • /
    • 1994
  • The Precambrian granite, and the Yuli group and the Hyeondong gneisss complex are studied to unravel the metamorphic history of the northeastern Sobaeksan massif. The Hongjesa granite, emplaced at 650-$700^{\circ}C$ and $3{\pm}1$ kbar, has been altered at 310-$568^{\circ}C$. Not only the chloritization of biotite but also the sericitization and saussuritization of plagioclase occur at the subsolidus stage. Biotites of the Hongjesa granite vary in their Al, Fe and Mg contents through dioctahedral and tschermakitic substitutions during the subsolidus stage. Secondary muscovites from biotite and feldspars are enriched in their Si and Mg+Fe contents through tschermakitic and trictahedral substitutuions. The metamorphic pressures and temperatures estimated from the Hyeondong gneiss complex are 3.6-6.6 kbar and 593-$718^{\circ}C$, respectively. Local migmatization producing the cordierite-bearing assemblage occurs in the Hyeondong gneiss complex. The Gibbs' method applied to the assemblage of garnet+biotite+plagioclase+quartz in banded gneiss suggests a complex P-T history of the Hyeondong gneiss complex.

  • PDF

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.

GIS-based Areal Distribution Ratios and Characteristics of Constituent Rocks with Geologic Ages and Rock Types in Jeonnam and Gwangju Areas (전남과 광주지역 구성암류의 GIS에 의한 지질시대별 암층별 분포율 및 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Cho, Deung-Lyong
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • To get the various data on geological information, distributional ratios and characteristics of constituent rocks with geologic ages and rock types were obtained by ArcGIS 10.1 program, digital geologic and geomorphic maps of 1:250,000 scale in Jeonnam and Gwangju areas. In the Jeonnam area, geologic ages can be largely divided into 7, in which their distribution ratios show decreasing trends in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown, Carbonifeorus-Triassic and Triassic, and the former fours make the most prevailing ratios of 94.80%. Rock types in the area can be assorted into 57 ones, in which major 7 ones occupy the dominant ratio of 71.68%. Among them, Kav (acidic volcanics+rhyolite and rhyolitic tuff) show much more distribution ratios than the others. It shows more aspects distributed in north, west, middle, east and south parts, especially in Sinan-Mogpo-Yeongam of west and Haenam of south parts in the area, respectively. On the other hand, geological ages in Gwangju area can be largely divided into 5, in which their distribution ratios show decreasing trends in the order of Jurassic, Quaternary, Cretaceous, Precambrian and Age-unknown, and the former fours occupy almost the whole ratio of 98.95%. Rock types in the area are 12 ones, in which major four ones make up the dominant value of 91.30%. Among them, Jurassic granites of the most dominant value are mostly occupied in the southwest-northeast part of the area. Next dominative Quaternary alluvium is mostly developed along the Yeongsan river, the Hwangryong river and their channel junction. And Yongdu and Donggye plains are well developed around the Yeongsan riverline, and channel junction of the Yeongsan and Hwangryong rivers in the area, respectively.

Areal Distribution Ratios of Constituent Rocks with Geologic Ages and Rock Types by GIS in the Gyeongsangbug-Do and Daegu Areas (GIS에 의한 경북-대구지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • On the ArcGIS 9.2 program in Gyeongsangbug-Do and Daegu areas, distribution ratios of rock types and geologic ages were obtained from the 1 : 250,000 scaled digital geologic and geomorphic maps. The obtained distribution ratios here will be used the geologic information data for industrialization and development planning of rock resources. The Gyeongsangbug-Do area consists of 86 rock types that can be divided into 10 large groups in geologic age. Their geologic distribution ratios show the decreasing in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown and Tertiary, all of which occupy the prevailing ratio of 96.30% in the area. Of which, sixteen rock types are somewhat dominant ones (64.04%). They are of Precambrian Yulri group and granite gneiss of the Yeongnam metamorphic complex and biotite gneiss of the Sobaegsan metamorphic complex, Age-unknown granite, Jurassic granite, Cretaceous Gasongdong and Dogyedong formations of the Yeongyang sub-basin, Nagdong and Chunsan formations and intermediate-basic volcanics of Euiseong sub-basin, Jinju and Jindong formations and andesite-andesitic tuff of Milyang sub-basin, and hornblende granite, and Quaternary alluvium. They show relatively narrow ranges of 2.07-6.53% in geologic distribution in exception of Jurassic granite showing 13.14%. And the rest 70 rock types appear to very narrow range between 0.01 and 1.94 %. On the other hand, twelve rock types are developed in the Daegu area. Their geologic ages appear to be classified into Cretaceous and Quaternary occupying 86.05% and 11.39%, respectively. Seven rock types take possession of 94.04% among the all rocks. The major rock types are Jinju formation of the Sindong group, Chilgog, Haman and Jindong formations of the Hayang group, andesite and andesitic tuff, hornblende granite and Quaternary alluvium. With exception of andesite and andesitic tuff of 37.40%, the types show slightly wide range of 3.25-17.39%, which apparently differ trends from that of Gyeongsangbug-Do area. And the rest of rock types have narrow ranges of 0.22-1.81% in the Daegu area.

Petrogenesis and Metamorphism of Charnockite of Eastern Jirisan Area (지리산 동부 지역에 분포하는 차노카이트의 변성작용과 성인에 관한 연구)

  • 김동연;송용선;박계헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.138-156
    • /
    • 2002
  • Precambrian metamorphic rocks of southwest Sobaeksan massif consist of mainly granitic gneiss, porphyroblastic gneiss and quartzofeldspathic gneiss. The orthopyroxene-bearing rocks(charnockites) are found in the west of Hadong-Sancheong anorthosite complex. The charnockites are 3km wide, 12km long and divided into massive and foliated types based on their texture. The compositions of charnockites are comparable to granodiorite to adamellite and subalkaline. Variations in major and trace elemental abundances show typical magmatic differentiation trends. The geochemical data plotted on tectonic discrimination diagrams reveal that these charnockites were formed in the active tectonic environment. The massive and folidated charnockites are mainly composed of plagioclase, orthopyroxene, microcline, quartz and disseminated garnet. Camels generally show characteristic zonal textures with decreasing $X_{alm}$(0.74~0.83), $X_{Py}$ (0.07~0.12) and $X_{Mg}$ (0.12~0.08) and increasing $X_{grs}$(0.03~0.15) from core to rim. Metamorphic temperature and pressure of the charnockites estimated from orthopyroxene-garnet-plagioclase-quartz assemblages show wide range of variation of $600~900^{\circ}C$ and 2.5~7.5 kbar respectively. The results of P-T estimates indicate an anticlockwise P-T evolution path.

Chalcopyrite Disease in Sphalerite: A Case of the Soowang Ore Deposits in Muju, Republic of Korea (무주 수왕광산에서 산출되는 섬아연석의 황동석 병변에 관한 연구)

  • Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.551-558
    • /
    • 2008
  • The Soowang deposits occur in the quartz veins that were filled fissures in the middle Cretaceous porphyritic granite and/or the Precambrian Sobaegsan gneiss complex. Paragenetic studies suggest that the vein filling can be divided into four identifiable stages. Sphalerites were deposited by the cooling fluids at stages I, II, and III. The results of microscopic observation and EPMA analysis suggest that the chalcopyrite dots and disease in sphalerite are replacement products by later hydrothermal solution at the early stage III. The inferred processes of chalcopyrite disease are as follows: (1) Fe enrichment to the margins and along the cracks of the Fe-poor sphalerite by Fe-rich solution, (2) Formation of chalcopyrite dots in the Fe-enriched sphalerite formed at the stage II, and Fe reduction of sphalerite near the chalcopyrite dots by Cu-bearing solution, (3) Formation of "chalcopyrite disease" penetrating the compositional zoning of sphalerite at the early stage III.

Studies on the Geology and Geochemistry in the Beonam Mine, Korea (전북 번암광산의 지질과 지화학적 연구)

  • Chung, Jae-Il;Na, Choon-Ki;Lee, Young-Up;Jeon, Seo-Ryeong;Kim, Seon-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.623-633
    • /
    • 1995
  • The Beonam deposits which is located in south-western part of Sobaeksan massif are emplaced along $N20{\sim}30^{\circ}E$ trending fissures in Precambrian Sobaeksan gneiss complex. Surrounding granites are inferred to be differentiated and formed from calc-alkaline magma which was generated from remelting or partial melting of the crustral material having igneous composition. The Sr isotope data of ore minerals showing significantly low initial Sr value relative to those of surrounding granite batholiths suggest that the ore-bearing fluid formed the Beonam Au-Ag mine are isotopically distinct from those of the wall rocks, and it indicates that there is no evidence of genetic relationship between ore-bearing fluids and surrounding granites, although further study should be needed. The results of paragenetic studies suggest three stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage, stage III: minor silverbearing minerals, barren quartz and carbonates stage. The temperature, salinity and pressure of the Beonam deposits estimated from mineral assemblage, chemical composition, fluid inclusion and sulfur isotope geothermometry are as follows; stage I: $200{\sim}315^{\circ}C$, 3.5~6.5 NaCl eq. wt%, 0.28~0.61 Kbar, stage II: $150{\sim}235^{\circ}C$, 4.5~7.4 NaCl eq. wt%, 0.11~0.15 Kbar. The estimated oxygen and sulfur fugacity during first stage mineralization, based on phase relation of associated minerals, range from $10^{35.1}{\sim}10^{-39.7}$ atm. and $10^{-11.0}{\sim}10^{-13.4}$ atm., respectively. All these evidences suggest that the Beonam deposits are polymetallic meso-epithermal ore deposits.

  • PDF

Fission Track Zircon Ages of the Igneous Rocks in the Hamyang-Geochang Area, South Korea (함양(咸陽)-거창(居昌) 지역(地域), 화성암류(火成岩類)의 저어콘 휫션트랙 연대(年代))

  • Lee, Cheol-Lag;Lee, Yoon-Jong;Hayashi, Masao
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • FT dating of twelve zircon concentrates was carried out on the igneous rocks in the study area. The FT results from this study are younger than those of Rb-Sr or K-Ar by 20Ma, probably, due to the different closing temperature of the minerals. The obtained ages are $161{\pm}11Ma$ to $150{\pm}10Ma$ for the gneissose granodiorite and the Geochang granodiorite. It is estimated that the intermediate and basic rocks were formed at twice: one from $148{\pm}13Ma$ to $144{\pm}8Ma$, and the other from $122{\pm}8Ma$ to $104{\pm}7Ma$. In the case of the Gajo granite, the age is $96.5{\pm}5.7Ma$ to $95.4{\pm}6.4Ma$. Although considering the fact that the FT age is younger than the K-Ar age, it is likely that the magmatism in the Jurassic period was most intense in the area, which was associated with the Daebo orogeny.

  • PDF

The Overview of Layered structures in Mafic - Ultramafic Macheon Intrusion (고철질-초고철질 마천관입암의 층상구조 개관)

  • Song, Yong-Sun;Kim, Dong-Yeon;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.162-179
    • /
    • 2007
  • Macheon Layered Intrusion (MLI) which intruded into Precambrian gneiss complex of the northern Jirisan area, southeastern part of Youngnam (or Sobaeksan) Massif, is a layered mafic-ultramafic complex of Triassic age (ca. 223 Ma). The MLI is divided into Layered Series and Laminated Series. Layered Series is subdivided into Central Zone (Lower Zone) consisting of olivine gabbros and Peripheral Zone (Middle or Upper Zone) consisting of hornblende gabbros based on the type of cumulus texture and the main mafic phase. The Central Zone of Layered Series comprises thinly laminated olivine gabbros and uniform or thickly laminated coarse olivine gabbros which consist of mela-gabbro, troctolite, leuco-troctolite, and anorthositic rocks. Laminated Series is also subdivided into quartz-bearing biotite-pyroxene gabbros and homblende diorite and both have variable amount of interstitial quartz and microcline. Laminated series display moderately to slightly developed igneous lamination which is defined by the planar alignment of lath-shape plagioclases. Chilled margin of quartz-bearing biotite-pyroxene gabbro with surrounding Precambrian gneisses insists shallower intrusion of more felsic cognate magma evolved in the deep a little later. Rocks of Layered Series have orthocumulus to adcumulus olivine, adcumulus to intercumulus plagioclase, and intercumulus to heteradcumulus pyroxene and hornblende. Magmatic modally grading, folding, and cross-lamination are not rarely occurred in thinly layered rocks. These textural characteristics define main mechanisms of the formation of layered and laminated structure in mafic-ultramafic rocks of Macheon Layered Intrusion are gravity settling and in-situ crystallization associated with slumping and density current.