• Title/Summary/Keyword: 소둔로

Search Result 84, Processing Time 0.022 seconds

$H^{\infty}$ Controller Design for RTP System using Weighted Mixed Sensitivity Minimization (하중 혼합감도함수를 이용한 RTP 시스템의 $H^{\infty}$ 제어기 설계)

  • Lee, Sang-Kyung;Kim, Jong-Hae;Oh, Do-Chang;Park, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.55-65
    • /
    • 1998
  • In industrial fields, RTP(rapid thermal processing) system is widely used for improving the oxidation and the annealing in semiconductor manufacturing process. The main control factors are temperature control of wafer and uniformity in the wafer. In this paper, we propose an $H^{\infty}$ controller design of RTP system satisfying robust stability and performance using weighted mixed sensitivity miniimization and loop shaping technique. And we need reduction technique because of the difficulty of implementation with the obtained high order controller for original model and reduced models, namely, Hankel, square-root balanced, and Schur balanced methods. An example is proposed to show the validity of the proposed method.

  • PDF

Effort of C and N on corrosion resistance of 6Mo grade super stainless steel (6Mo급 슈퍼 스테인리스강의 부식 특성에 미치는 탄소 및 질소의 영향)

  • 김수한;박용수;류우석;국일현;김영식
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.05a
    • /
    • pp.102-102
    • /
    • 1999
  • 6Mo급 슈퍼 스테인리스강의 내식성은 여러 환경에서 여러 가지의 부식 시험 방법을 통해서 확띤되어 왔다. 이 합금이 보이는 탁월한 내식성 때문에 해수 설비 계통,정유 설비,원자력 발전소의 열교환기 등의 중요 재료로서 그 사용 용도가 급격히 증가하고 있다. 그런데 방사선의 영향을 받게 되는 설비에 금속 재료가 사용되는 경우,특히 경수로의 노내 구조물, 액체 금속로의 열교환기, 핵융합로의 제1벽 재료 등 에서는 합금 원소가 방사성 환경에 의하여 제거되는 현상이 나타난다. 따라서 본 연구에서는 이러한 상황을 미리 재료 제조 차원에서 모사하여 탄소량과 질소량의 함량 을 달리 한 6Mo급 슈퍼 스테인리스강을 제조하여 미세 조직, 기계적 성질 및 부식 특성의 변화에 대하여 연구하였다. 진공 고주파 유도 용해로를 이용하여 탄소량과 질소량이 각기 변화된 슈퍼 스테인리스강을 용해 한 뒤 아르곤 가스 분위기에서 $1180^{\circ}C$로 soaking하고 열간 압연을 행하였다. 열간 압연으로 표변에 생성된 산화 스케일을 불산과 질산의 혼합 용액으로 제거한 뒤 냉간 압연을 행하였다. 이 냉연 판재에 대하여 $1150^{\circ}C$로 소둔하여 각 실험에 사용하였다. 광학 현미경을 이용하여 미세 조직의 변화를 관찰하였으며, 상온과 고온($520^{\circ}C$)에서 인장 시험을 행하였으며, 경도 측정을 행하였다. 또한 양극 분극 시험과 비등 질산 침지 시험 및 비등 40% NaOH 용액에서의 일정 연신율 시험을 행하 였다. 탄소 함량이 증가할수록 항복 강도 및 인장 강도는 증가하고 있으며 연신율은 감 소하는 일반적인 경향을 보였으며 비등 질산 시험에서는 탄소량에 관계없이 매우 우수한 내식성을 쁘였다. 또한 비등 상태의 40% NaOH 용액에서의 응력 부식 균열 시험 결과, 탄소량이 증가할수록 부식 저항성이 증가하고 있는 것으로 평가되었다. 한 편 질소량이 증까할수록 결정립이 미세화되었으며 경도값이 상승하였다. 이들 합금 에 대한 양극 분극 시험 결과, 질소량의 변화가 탄소량의 변화보다 내식성에 큰 영향 을 미치고 있음을 알 수 있었다.

  • PDF

The Recovery Phenomena of the Cold Worked Pure Zirconium

  • Jung, Dae-Young;Yoon, Jong-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 1975
  • In the ,present study, recovery behaviour of cold compressed pure zirconium was investigated by the measurement of X-ray line breadth and microhardness. By isochronal annealing, it was found that both hardness and X-ray line breadth do not show remarkable decrease below 300"e. It was also found that at the same degree of cold work, the rate of recovery of X-ray line breadth is different from that of hardness, and that regardless of cold working degrees, activation energy for the recovery of X-ray line breadth is less than that of hard ness. Activation energies for recovery of X-ray line breadth in 8%, 19% and 28% cold worked zirconium were 64,800 cal/gram atom, 56,400 cal/gram atom and 48,500 cal/gram atom, respectively, and those of hardness were 72,800 cal/ gram atom, 64,300 ca1/9ram atom and 58,600 ca119ram atom, respectively.vely.

  • PDF

Effect of Dewpoints on Annealing Behavior and Coating Characteristics in IF High Strength Steels Containing Si and Mn (Si, Mn함유 IF 고강도강의 소둔거동 및 도금특성에 미치는 이슬점 온도의 영향)

  • Jeon, Sun-Ho;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.427-436
    • /
    • 2008
  • The effect of dewpoints on annealing behavior and coating characteristics such as wettability and galvannealing kinetics was studied by annealing 0.3wt%Si - 0.1~0.4wt% Mn added interstitial-free high strength steels(IF-HSS). The 0.3wt%Si-0.1wt%Mn steel exhibited good wettability with molten zinc and galvannealing kinetics after annealing when the dewpoint of $H_2-N_2$ mixed gas was above $-20^{\circ}C$. It is shown that the wettability and galvannealing kinetics are directly related to the coverage of the external(surface) oxide formed by selective oxidation during annealing. At $N_2-15%H_2$ annealing atmosphere, the increase of dewpoint results in a gradual transition from external to internal selective oxidation. The decrease of external oxidation of alloying elements with a concurrent increase of their subsurface enrichment in the substrate, showing a larger surface area that was free of oxide particles, contributed to the improved wettability and galvannealing kinetics. On the other hand, the corresponding wettability and galvannealing kinetics were deteriorated with the dewpoints below $-20^{\circ}C$. The continuous oxide layer of network and/or film type was formed on the steel surface, leading to the poor wettability and galvannealing kinetics. It causes a high contact angle between annealed surface and molten zinc and plays an interrupting role in interdiffusion of Zn and Fe during galvannealing process.

Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel (소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향)

  • Yun, Duck Bin;Park, Jin Sung;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

Annealing Effect on the Mechanical Properties of Hot-Rolled Fe55Co17.5Ni10Cr12.5Mo5 High-Entropy Alloy (열간압연 된 Fe55Co17.5Ni10Cr12.5Mo5 고엔트로피합금의 소둔 조건에 따른 기계적 특성 변화)

  • Park, H.D.;Bae, D.H.;Won, J.W.;Moon, J.;Kim, H.S.;Seol, J.B.;Sung, H.;Bae, J.W.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.273-280
    • /
    • 2022
  • Although the mechanical properties of high-entropy alloys depend on the annealing conditions, limited works were established to investigate the annealing effect on the mechanical properties of Mo-added high-entropy alloys. Therefore, in the present work, the annealing effects on the microstructural evolution and mechanical properties of Mo-added high-entropy alloy were investigated. As a result, incomplete recrystallization from the limited annealing time not only suppresses deformation-induced phase transformation during cryogenic tensile test but also induces a deformation instability that results into the ductility reduction compare with the fully recrystallized sample. This result represents adjustment of annealing time is useful to control both transformation-induce plasticity and deformation instability of high-entropy alloys, and this can be applied to control the mechanical properties of metallic alloys by combining pre-straining and subsequent annealing.

Polycrystalline $Y_{3}Fe_{5}O_{12}$ Garnet Films Grown by a Pulsed Laser Ablation Technique (엑시머 레이저 증착기술에 의한 $Y_{3}Fe_{5}O_{12}$ 다결정 박막 제조)

  • Yang, C.J.;Kim, S.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.214-218
    • /
    • 1994
  • $Y_{3}Fe_{5}O_{12}$ based garnet films(thin or thick) offer a great promise for the application of microwave communication components. We investigated the magnetic and crystallographic preperties of $Y_{3}Fe_{5}O_{12}$ thick films prepared by KrF eximer laser ablation of a stoichiometric garnet target. It was possible to obtain almost epitaxially oriented films on $Al_{2}O_{3}$(1102) plane. Although the crystalline quality depends on substrate temperature and $O_{2}$ partial pressure used($Po_{2}$), 4.1m thick films of $4{\pi}M_{s}=1300$ Gauss and $H_{c}=37.5$ Oe were obtained at the substrate temperature of $700^{\circ}C$ with the $Po_{2}$ of 100 mTorr after annealing the as-deposited films at $700^{\circ}C$ for 2 hours. These films are expected to be used for magnetostatic spin wave filters at narrow bandwidth frequency.

  • PDF

A study on coil temperature bariation in 75% hydrogen batch annealing furnace (75% 수소 BATCH 소둔시에서의 코일 온도변화에 관한 연구)

  • Jeon, Eon-Chan;Kim, Soon-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 1994
  • A Cold spot temperature control system for the batch annealing furnace has been estabilished in order to reduce energy consumption to improve productivity and stabilize the propertics of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, variation of coil cold spot temperature with time during heating and actual temperature measurements at mid-width of each coil during heating and actual temperature measurements at mid-width of each coil during soaking. The results of the tempaeature variation effect on the batch annealing are as follows. 1) Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas, and annealing cycle time is reduced to 2.7 times. 2) In case of short time healing, the slowest heating part is the center of B coil, in case of long time heating, the low temperature point moves from the center of coil to inside coil. And the temperature in this part is higher than other parts when cooling. When finished heating, the cold spot is located 1/3 of coil inside in case of HNx atmospheric gas. But center of coil in case of Ax atmospheric gas. 3) The outside of top coil is the highest temperature point when heating, which becomes the lowest temperature point when cooling. So, this point becomes high temperature zone at heating and low temperature zone at cooling, It has relation according to atmospheric gas component and flow rate. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1214mm width coil must be 2.5 hours longer than that of 914mm width coil for the same ciol weight. 5) Annealing cycle time with Ax atmospheric gas is extended 1 hour in of slow cooling during 5 hours in order to avoid rapid cooling.

  • PDF

Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling (고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측)

  • Song, Gil Ho;Jung, Jae Chook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high-strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high-strength steel below TS 980 MPa in skin pass rolling.

The Effect of Particle Size and Compaction Pressure on the Thermoelectric Properties of n-type FeSi2 (N형 FeSi2의 열전특성에 미치는 입자크기 및 성형압력의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4835-4841
    • /
    • 2015
  • The effect of particle size and compaction pressure on the thermoelectric properties of n-type $FeSi_2$ was investigated. The starting powders with various particle size were pressed into a compact (compaction pressure; $70{\sim}220kg/cm^2$). The compact specimens were sintered at 1473 K for 7 h and annealed at 1103 K for 100 h under Ar atmosphere to transform to the semiconducting ${\beta}$-phase. The microstructure and phases of the specimens were observed by SEM, XRD and EDS. The electrical conductivity and Seebeck coefficient were measured simultaneously for the same specimen at r.t.~1023 K in Ar atmosphere. The electrical conductivity increased with decreasing particle size and hence the increases of relative density of the sintered body and the amount of residual metallic phase ${\varepsilon}$-FeSi due to a increase of the electrical conductivity. The Seebeck coefficient exhibited the maximum value at about 700~800 K and decreased with decreasing particle size. This must be due to a increase of residual metallic phase ${\varepsilon}$-FeSi. On the other hand, the change of compaction pressure appeared to have little effect on the thermoelectric properties. Consequently, the power factor would be affected more by particle size than compaction pressure.