• Title/Summary/Keyword: 소독공정

Search Result 123, Processing Time 0.032 seconds

Effect of Postharvest Treatments on Storage Quality of Buckwheat Sprouts (메밀 새싹채소의 저장품질에 대한 수확 후 처리공정 효과)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.98-104
    • /
    • 2011
  • The storage quality of fresh buckwheat sprouts, as influenced by pretreatment and packaging within processing steps, was investigated to establish appropriate postharvest handling treatment for the commodity. After harvest, the sprouts were dipped in chlorine water (100 ppm), rinsed twice with clean water, pre-cooled with iced water, de-watered, and packed in plastic trays. Sprout samples taken from each processing step were stored at $5^{\circ}C$ for 6 days to measure quality attributes. Viable cell counts of mesophilic aerobes and coliform bacteria were lower by about 1 log scale in the postharvest treated samples compared to an untreated control, although the initial microbial reduction due to the postharvest treatments was offset by cell growth during storage. All sprout samples showed a decrease of fresh weight by approximately 4% after 6 days of storage. However, moisture and soluble solid contents were maintained at the initial levels of the sprouts. No significant difference in surface color was observed among sample treatments. For sensory properties including discoloration, wilting, decay, and visual quality, there were no significant differences among sample treatments. The present results suggest that proper postharvest processing treatments can exert positive effects on extending the shelf-life of fresh buckwheat sprout.

Microbiological Hazard Analysis for HACCP System Application to fermented milk (발효유류의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Park, Seong-Bin;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.438-444
    • /
    • 2015
  • The aim of this research was to apply a HACCP system (Hazard Analysis Critical Control Point) to fermented milk. The main ingredients of fermented milk, work facilities and workers were obtained from a company named YD, which is located in Seobuk-gu, Cheonan-si between November 5 2013 to April 13, 2014. A manufacturing process chart was prepared by referring to the manufacturing process of fermented milk manufacturers in common. The manufacturing process chart was made with raw materials; Raw milk, High Fructose Corn Syrup, Oligosaccharides, Lactic Acid bacteria and Subsidiary ingredients, Warehousing of packaging materials, Storage, Input, Preheating, Mixing, Homogeneity, Sterilization, Precooling, Culture, Filtration, In packaging, Out packaging, Storage, and Consignment, as listed Table 1. The results of the microbiological hazard analysis on the raw materials was safe after sterilization($90^{\circ}C{\pm}5^{\circ}C$, $35{\pm}3min.$) On the other hand,a microorganism test of an environment and workers suggested that the microbiological hazard should be reduced through systematic cleaning and disinfection accompanied by improved personal hygiene based on hygienic education on workers and the management of microorganisms in air.

Fluoride and nitrate removal by electro-coagulation for decentralized water treatment plants (전기응집을 이용한 소규모 수도시설의 불소 및 질산성질소 이온의 제거)

  • Han, Song-Hee;Chang, In-Soung;Back, Soun-Ok;Joung, Seun-Young;Lee, Cheol-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.115-116
    • /
    • 2010
  • 광역상수도의 경우 수자원공사 및 지방상수도 사업자들에 의해 전문적으로 수질을 관리하고 음용수를 보급하고 있으나 소규모 수도시설의 경우 전문능력을 갖춘 관리자가 아닌 마을의 대표자가 맡아 관리함에 따라 안정성 및 유지관리의 어려움이 자주 제기되고 있다.[1] 또한 소규모 수도시설의 경우 취수원으로 지하수나 계곡수를 이용하여 여과나 염소소독을 거쳐 음용수로 이용함에 따라 중금속 및 무기이온 등 각종 오염물질이 효과적으로 제거되지 않아 이를 사용하는 주민들이 불편함을 겪고 있는 실정이다. 환경부의 법정 수질 검사에 따르면 부적합 판정을 받은 곳의 대부분은 마을상수도와 소규모 급수시설인 것으로 나타났으며 초과 항목으로는 무기이온 중 특히 불소와 질산성질소 인 것으로 나타났다.[2] 이러한 문제점을 해결하고자 기존의 고도 정수처리 시설인 막여과, 오존처리, 활성탄 흡착 공정 등을[3-5] 적용하고 있으나 소규모 수도시설에 적용하기에는 유지관리, 규모, 경제적 측면 등 여러 한계점을 지니고 있다. 따라서 본 연구에서는 이러한 문제점을 해결하기 위한 방안으로 전기응집기술을 이용하여 음용수 수질기준을 초과하는 무기이온 중 불소와 질산성 질소를 제거하고자 하였다. 전기응집기술은 제거효율이 높고, 운전이 용이하며 부가적인 화학약품의 첨가가 불필요하다.[6,7] 또한 기존의 고도정수처리 기술에 비해 전기응집 공정은 처리효율과 경제적인 측면 모두를 만족시키고 있어 소규모 수도시설의 불소와 질산성질소를 효과적으로 제거할 수 있는 방안으로 판단된다. 본 연구에 사용된 실험장치는 직류전원공급장치 (DC power supply), 반응조, 전극으로 구성되어 있다. 직류전원공급장치는 최대전압 30 Volt, 최대 전류 30 Amper 까지 조절 가능하였으며 반응조의 크기는 14.5cm(w) ${\times}$ 9cm(L) ${\times}$ 22cm(H) 이고 실용적 1.5L이다. 반응조의 상부에는 전극이 고정될 수 있도록 0.5cm 간격의 홈을 만들어 제작 하였다. 전극은 가용성 전극인 알루미늄 (Al), 스테인레스스틸(SUS304)를 이용하였다. 이를 통해 전류밀도, 전극간격 등의 변수를 두어 최적의 전기응집 운전 조건을 파악하였으며 이는 소규모 수도시설의 수질개선 향상에 도움이 될 수 있을 것으로 판단된다.

  • PDF

Improvement of Quality in Treated Water by the pH Adjustment of Raw Water (원수 pH 조정에 의한 정수 수질 개선)

  • Jeong, Gwan-Jo;Lee, Kyeong-Woo;Kim, Hyun-Hee;Jeong, Eui-Sun;Park, Hyeon;Han, Sun-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.469-476
    • /
    • 2010
  • The purpose of the study is to find ways to decrease turbidity and residual aluminum by improving the efficiency of coagulation process through controlling the pH of the source water with $CO_2$ when the pH increases by algal bloom or by the characteristics of the source water. Water quality parameters were monitored before and after $CO_2$ addition in February, March, April, and December, when the pH of the source water is over 8.0 and constant regardless of day and night. Water quality parameters closely related with evaluation of treated drinking water quality were monitored in detail, e.g. aluminum, turbidity, particle counts, TOC, THMs, 2-MIB, and geosmin. According to the results, inorganic water quality parameters such as turbidity, particle counts, and aluminum were decreased due to improved efficiency of the coagulation process. It was concluded that the pH of the water in the arrival basin must be controlled below 7.4 by adding $CO_2$ when the pH of the source water increasing. By controlling pH with $CO_2$, the water quality could be maintained within the drinking water quality goal of Seoul City (<30 particle/mL of particle count, <0.05 NTU of turbidity and <0.02 mg/L of aluminum). The change of the pH could not affect the concentrations of DBP's (e.g., THMs, CH, and HAAs) and taste/odor causing compounds (e.g., 2-MIB and geosmin). 2-MIB and geosmin were affected more by their initial concentrations in the source water.

Growth of Plug Seedlings of Petunia 'Madness Rose' and Pansy 'Magestic GT' in Various Mixtures of Recycled Horticultural Media (원예용 폐배지를 재활용한 혼합배지에서 페튜니아와 팬지 플러그묘의 생육)

  • Shin, Woo Gun;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.523-528
    • /
    • 2000
  • Plug seedlings of Petunia hybrida 'Madness Rose' and Viola tricolor 'Magestic GT' were cultured in media containing various volume ratios of recycled plug medium, recycled coir, perlite, granular rockwool, and vermiculite for 36 and 43 days after sowing, respectively. Recycled plug medium and recycled coir were steam pasteurized for 30 minutes at $120^{\circ}C$ and 1.5 atmosphere. An unused commercial plug medium (Tosilee, pH 5.10, EC $0.12mS{\cdot}cm^{-1}$ at 1:5 dilution, v/v, Shinan Grow Co.) was used as the control. The pH of different media before and after growing seedlings was similar. Medium EC was high when recycled plug medium was included. Recycled coir (75%)+vermiculite (25%) mixture also had high medium EC. However, medium EC was low when granular rockwool or perlite was included. Height, root formation, shoot dry weight and leaf count (ea) of petunia, and height, total fresh and dry weights, and shoot fresh and root dry weights of pansy were the highest in recycled coir (75%)+perlite (25%) mixture. Recycled coir was better than recycled plug medium in physicochemical properties, and also in resultant plant growth. It is recommended to include perlite or granular rockwool when plug media including recycled horticultural media are prepared.

  • PDF

Microbiological Contamination Levels in the Processing of Korea Rice Cakes (떡류의 제조공정별 미생물학적 오염도 평가)

  • Jeong, Se-Hee;Choi, Song-Yi;Cho, Joon-Il;Lee, Soon-Ho;Hwang, In-Gyun;Na, Hye-Jin;Oh, Deog-Hwan;Bahk, Gyung-Jin;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • This study was conducted to evaluate microbial contamination levels of Korea traditional rice cakes such as Sirutteok, Garaetteok and Gyeongdan in the manufacturing process and environment. The microbial contamination levels such as total aerobic bacteria, fungi, coliforms, Escherichia coli, Staphylococcus aureus, Bacillus cereus and Clostridium perfringens of rice cake products were analyzed. The contamination levels of total aerobic bacteria, coliforms, fungi and B. cereus in raw materials were in the range of 2.4~4.5, ND~1.9, 1.2~2.1 and 1.0~2.1 log CFU/g, respectively. The microbial contamination levels of total aerobic bacteria, coliforms, fungi and B. cereus in manufacturing process of rice cakes were increased in the soaking and grinding steps and were decreased in steaming step. E. coli, S. aureus and C. perfringens were not detected in any manufacturing process and environment. The microbial contamination levels of raw materials and final products of rice cake were suitable for microbial safety standard in Korea. However, the manufacturing environment such as equipments and employee's sanitation were in trouble for microbial safety. The results of this study suggest that safety educatio n for personal hygiene and safetymanagement in processing environment are continuously required to assure safety in working environment and employee's individual hygiene.

Microbial Hazard Analysis of Manufacturing Processes for Starch Noodle (당면의 제조공정별 미생물학적 위해요소 분석)

  • Cheon, Jin-Young;Yang, Ji Hye;Kim, Min Jeong;Lee, Su-Mi;Cha, Myeonghwa;Park, Ki-Hwan;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • The purpose of this study was to identify control points through microbiological hazard analysis in the manufacturing processes of starch noodles. Samples were collected from the ingredients, manufacturing processes, equipment and environment. Microbiological hazard assessments were performed using aerobic plate counts (APC), Enterobacteriaceae (EB), E. coli and five pathogens including B. cereus, E. coli O157:H7, L. monocytogenes, Salmonella spp., and S. aureus. The APC levels in raw materials were from 2.12 to 3.83 log CFU/g. The contamination levels after kneading were 4.31 log CFU/g for APCs and 2.88 log CFU/g for EB counts. APCs decreased to 1.63 log CFU/g and EB were not detected after gelatinization, but their levels slightly increased upon cooling, cutting, ripening, freezing, thawing, and separating. The reuse of cooling and coating water would be a critical source of microbial increase after cooling. After drying, APCs and EB counts decreased to 5.05 log CFU/g and 2.74 log CFU/g, respectively, and the levels were maintained to final products. These results suggest that the cooling process is a critical control point for microbiological safety, and the cooling water should be treated and controlled to prevent cross contamination by pre-requisite program.

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.

Nutrition Teachers (Dietitians)' Perceptions of Barriers to Implementation of HACCP System in School Foodservices in the Gyeongnam Area (경남지역 학교급식 HACCP 시스템 적용 장애요인에 대한 영양(교)사의 인지도 분석)

  • Hwang, Hye-Ok;Kim, Hyun-Ah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1475-1485
    • /
    • 2012
  • This study was conducted in order to understand nutrition teachers (dietitians)' perceptions of barriers to implementation of HACCP system in school foodservices in Gyeongnam, Korea. Questionnaires were distributed to 350 nutrition teachers (dietitians) from November to December of 2009, and 214 were collected and analyzed. The results of this study were as follows. First, nutrition teachers (dietitians) recognized the following as barriers in implementing the HACCP system: 'the status of facilities and utilities'> 'monitoring'> 'work satisfaction'> 'foodservice employees'> 'cooperation of HACCP team'> 'cooperation of persons concerned besides foodservice employees'> 'understanding the HACCP system'. Second, total working experience was found to be the factor most affecting 'cooperation of HACCP team (p<0.01)', 'cooperation of persons concerned besides foodservice employees (p<0.01)', 'foodservice employees (p<0.05)', and 'work satisfaction (p<0.05)'. Further, 'the status of facilities and utilities' was significantly affected by 'construction/reconstruction of kitchen (p<0.01)', 'division of kitchen area (p<0.01)', 'existence of preliminary preparation room (p<0.01)', and 'existence of dishwashing room (p<0.01)'. Third, dietitians perceived the following concerning hindrance factors of the HACCP system according to CCP stage: 'CCP 1'> 'CCP 3'> 'CCP 2, 'CCP 6'> 'CCP 4'> 'CCP 8'> 'CCP 7'> 'CCP 5'. In conclusion, this study showed that nutrition teachers (dietitians) in the Gyeongnam area recognized 'the status of facilities and utilities' from HACCP areas and 'CCP 1 (menu planning)' from CCP stages as the greatest barriers to implementing the HACCP system in school foodservices. To implement the HACCP system successfully in school foodservices, facilities and utilities should be properly equipped, and menu planning training for nutrition teachers (dietitian) should be conducted.