• Title/Summary/Keyword: 소규모 인공습지

Search Result 29, Processing Time 0.042 seconds

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Design of Urban Area by Low Impact Development and Effect Analysis for Stormwater Management (도시유역의 LID 설계와 우수관리 효과)

  • Lee, Sangjin;Kang, Taeuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.142-142
    • /
    • 2015
  • 저영향개발 기법은 유역개발에 따른 수문 및 환경적 영향을 최소화하기 위해 자연상태를 가급적 보존하고 불투수 면적을 최대한 줄이며, 우수발생 지점에서부터 소규모로 우수를 관리하는 분산식 우수배제 방식을 지향한다. 본 연구의 목적은 이러한 저영향개발 기법을 이용한 도시유역의 우수관리에 관한 효과를 기술적, 경제적 관점에서 정량적으로 평가하는 것이다. 이를 위해 기존 개발 방식으로 계획된 송산 그린시티 동측지구에 저영향개발 기법을 적용하였고, 결과를 기존 개발 방식과 비교하여 저영향개발 기법의 효과를 분석하였다. 대상유역에 대하여 저영향개발 기법을 적용하기 위해 분산식 우수배제 방식을 도입하였고(그림 1), 식생수로와 인공습지 등의 저영향개발 요소기술을 적용하였다(그림 2). 연구에서는 SWMM을 이용하여 저영향개발 기법과 기존 개발 방식에 의한 우수관리를 각각 모의하였고, 모의 결과를 홍수, 물순환, 비점오염 저감의 관점에서 비교 검토하였다(그림 3과 4). 또한, 개략 공사비 산정을 통해 기존 개발 방식 대비 저영향개발 기술의 경제적 효과를 분석하였다. 그 결과, 저영향개발 기법을 적용할 경우, 상대적으로 저 비용으로도 기존 개발 방식에 의한 우수관리보다 더 높은 효과를 달성할 수 있는 것으로 분석되었다.

  • PDF

Comparative assessment of urban stormwater low impact strategies equipped with pre-treatment zones (침강지 시설이 조성된 LID 시설의 환경적 영향평가)

  • Yano, K.A.V.;Reyes, N.J.D.G.;Jeon, M.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Recently, Low impact development techniques, a form of nature-based solutions (NBS), were seen cost-efficient alternatives that can be utilized as alternatives for conventional stormwater management practices. This study evaluated the effectiveness of an infiltration trench (IT) and a small constructed wetland (SCW) in treating urban stormwater runoff. Long-term monitoring data were observed to assess the seasonal performance and cite the advantages and disadvantages of utilizing the facilities. Analyses revealed that the IT has reduced performance during the summer season due to higher runoff volumes that exceeded the facility's storage volume capacity and caused the facility to overflow. On the other hand, the pollutant removal efficiency of the SCW was impacted by the winter season as a result of dormant biological activities. Sediment data also indicated that fine and medium sand particles mostly constituted the trapped sediments in the pretreatment and media zones. Sediments in SCW exhibited a lower COD and TN load due to the phytoremediation and microbiological degradation capabilities of the system. This study presented brief comparison LID facilities equipped with pre-treatment zones. The identified factors that can potentially affect the performance of the systems were also beneficial in establishing metrics on the utilization of similar types of nature-based stormwater management practices.

Selection of Optimum Water Plant in Constructed Wetland by Natural Purification Method for Municipal Sewage Treatment (자연정화공법에 의한 인공습지 하수처리장에서 최적 수생식물의 선정)

  • Seo, Dong-Cheol;Jang, Byeong-Il;Jo, In-Seong;Lim, Seok-Cheon;Lee, Hong-Jae;Cho, Ju-Sik;Kim, Hong-Chul;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.25-33
    • /
    • 2006
  • Objectives of this experiment were to select of the optimum water plant and to investigate the removal efficiency of the major nutrients in the constructed wetland by natural purification method for municipal sewage treatment in the farming and fishing village. For the experiment we used "constructed wetland" which was consisted of aerobic (vertical filter system) and anaerobic systems (horizontal filter system). Both systems were filled with gravel and filter media, and grew water plants on top of them. And then, we investigated several items such as sewage treatment efficiency, growth status of water plants and the absorbed amount of inorganic element in water plants with periodical periods. In aerobic area, removal efficiencies of BOD, COD, T-N and T-P were over 92%, 74%, 25% and 57%, respectively, and then when the water is passed through anaerobic area, the efficiency was over 96%, 84%, 44% and 71%, respectively, which was increased more treatment efficiency than that of aerobic area. Absorption amount of nitrogen and phosphorous in Miscanthus sacchariflorus BENTH were the highest in the water plants as 17.7 and 2.41 g/plant in the aerobic area, respectively. Absorption amounts of nitrogen and phosphorous in Scirpus tabernaemontani GMEL were the highest in the water plants as 8.7 and 1.13 g/plant in the anaerobic area, respectively. For the selection of optimum water plants in the constructed wetland by natural purification method for municipal sewage treatment, it were observed that there were Miscanthus sacchariflorus BENTH, Phragmites japonica STEUD and Phragmites communis TRINIUS in the aerobic area and were Zizania latifolia TURCZ, Scirpus tabernaemontani GMEL, Typha orientalis PRESL, Iris pseudoacorus L and Cares dispalata BOOTT in the anaerobic area.

Application of QUAL2K Model for Daejeon Tandongcheon, A Small Urban Stream and Evaluation of Terrace Land Constructed Wetland (도시 소하천, 대전 탄동천, 수질개선 대안 수립을 위한 QUAL2K 수질모델 구축과 제외지 인공습지공법 적용 효율 평가)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.192-199
    • /
    • 2013
  • The Tandong-cheon stream is a 7.4 km long small urban stream that passes through Daeduk Science Town in Daejeon Korea. Despite the stream has great potential as an educational and recreational site due to its central location in the science town and science museums nearby, environmental aspect especially for water quality has not been evaluated properly. Through field survey, major pollution sources of the stream were identified and effect of water quality improvement alternatives were evaluated using a QUAL2K water quality model for the stream. The study indicated that controlling major pollution sources of the stream alone may not be sufficient for reaching the water quality target. Therefore, additional pollution control methods are necessary. We applied the developed model to evaluate the effects of a constructed wetland on the terrace land, and analyzed whether the water quality target can be met at the outlet of the stream. It is expected that this study would provide a good reference for environmentally sound management of small urban streams in Korea.

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

A study on hydraulic stability assessment based on two-dimensional model in river flood plain (2차원 모형 기반 하천 홍수터에서의 수리적 안정성 평가 연구)

  • Ku, Tae Geom;Song, Chang Geun;Park, Yong Sung;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.112-112
    • /
    • 2017
  • 하천은 크게 하도와 홍수터 그리고 제방으로 나눌 수 있으며, 최근 대하천 및 중 소규모 하천의 홍수터 공간을 활용하여 인공습지, 체육시설 및 공원 등과 같은 다양한 친수시설들을 조성하여 활용하고 있다. 이러한 홍수터는 여름철 태풍이나 집중호우로 인해 침수되다가, 강우 사상이 종료된 이후에는 유사가 퇴적되어 복구비용이 반복적으로 발생하고 있다. 홍수시 홍수터에서의 수리적 안정성을 평가하기 위해서는 홍수터를 포함한 복단면에서의 흐름해석이 선행되어야 하며, 계산된 수리적 인자들을 이용하여 홍수터에서의 수리적 안정성을 평가할 수 있다. 국외에서는 국내와 다르게 하천 홍수터 공간을 거의 활용하지 않기 때문에 홍수터에서의 수리적 안정성 평가에 대한 연구사례는 드문 실정이며, 도시침수로 인한 제내지 홍수위험도 평가에 대한 연구가 주를 이루고 있다. 하지만 기존에 사용되고 있는 제내지 홍수위험도 지수를 국내 홍수터에 도입하여 수리적 안정성을 평가하기에는 침식 및 퇴적을 올바르게 고려할 수 없는 한계점이 있기 때문에 본 연구에서는 홍수시 홍수터 내에서 침식과 퇴적을 고려할 수 있는 홍수터 수리적 안정성 지수를 산정하고 과거 연구된 실내 수리실험 자료와 비교하여 적용성을 분석하고자 한다. 또한 자연하천에서의 실제 태풍 사상에 의한 침식 및 퇴적의 상대적 공간분포를 산정하여 홍수터에서의 수리적 안정성을 평가하고자 하였다.

  • PDF

A Study on Space Creation and Management Plan according to Characteristics by Type in Each Small-Scale Biotope in Seoul - Base on the Amphibian Habitats - (서울시 소규모 생물서식공간 유형별 특성에 따른 조성 및 관리방안 연구 - 양서류 서식지를 중심으로 -)

  • Park, Ha-Ju;Han, Bong-Ho;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.110-126
    • /
    • 2024
  • This study conducted a classification of small-scale biological habitats created in Seoul to analyze and synthesize location characteristics, habitat structure, biological habitat functions, and threat factors of representative sites, as well as derive creation and management problems according to the ecological characteristics. The aim was to suggest improvement measures and management items. Data collected through a field survey was used to categorize 39 locations, and 8 representative sites were selected by dividing them into location, water system, and size as classification criteria for typification. Due to the characteristics of each type, the site was created in an area where amphibian movement was disadvantageous due to low or disconnected connectivity with the hinterland forest, and the water supply was unstable in securing a constant flow and maintaining a constant water depth. The habitat structure has a small area, an artificial habitat structure that is unfavorable for amphibians, having the possibility of sediment inflow, and damage to the revetment area. The biological habitat function is a lack of wetland plants and the distribution of naturalized grasses, and threats include the establishment of hiking trails and decks in the surrounding area. Artificial disturbances occur adjacent to facilities. When creating habitats according to the characteristics of each type, it was necessary to review the possibility of an artificial water supply and introduce a water system with a continuous flow in order to connect the hinterland forest for amphibian movement and locate it in a place where water supply is possible. The habitat structure should be as large as possible, or several small-scale habitats should be connected to create a natural waterfront structure. In addition, additional wetland plants should be introduced to provide shelter for amphibians, and facilities such as walking paths should be installed in areas other than migration routes to prevent artificial disturbances. After construction, the management plan is to maintain various water depths for amphibians to inhabit and spawn, stabilize slopes due to sediment inflow, repair damage to revetments, and remove organic matter deposits to secure natural grasses and open water. Artificial management should be minimized. This study proposed improvement measures to improve the function of biological habitats through the analysis of problems with previously applied techniques, and based on this, in the future, small-scale biological habitat spaces suitable for the urban environment can be created for local governments that want to create small-scale biological habitat spaces, including Seoul City. It is significant in that it can provide management plans.

Evaluation of Pollutant Removal Efficiency in Environmentally Friendly Full-scale Constructed Wetlands for Treating Domestic Sewage during Long-term Monitoring (장기 모니터링을 통한 환경친화형 인공습지 하수처리장의 수질정화효율 평가)

  • Seo, Dong-Cheol;Jo, In-Seong;Lim, Seok-Cheon;Lee, Byeong-Ju;Park, Seong-Kyu;Cheon, Yeong-Seok;Park, Jong-Hwan;Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • A constructed wetland which was composed of aerobic and anaerobic areas was evaluated for 3 years to effectively treat the sewage produced in farming and fishing communities. For 3 years in a constructed wetland, biochemical oxygen demand(BOD), chemical oxygen demand(COD), suspended solids(SS), total nitrogen(T-N), and total phosphorus(T-P) in effluent were 0.2${\sim}$11.8, 1.0${\sim}$41.9, 1.1${\sim}$6.5, 4${\sim}$60 and 0.02${\sim}$3.51 mg/L, respectively. Removal rate of BOD, COD and SS in effluent were 97, 92 and 99%, respectively, in the third year. As time goes by, removal rate of T-N and T-P in treated water in aerobic area and effluent were gradually increased in a constructed wetland. In the third year, removal rate in effluent were 62 and 73%, respectively. By the seasons, removal rate of BOD, COD, SS, T-N and T-P were 97${\sim}$98, 87${\sim}$91, 99, 43${\sim}$61 and 76${\sim}$86%, respectively. Removal rate of BOD, COD, SS and T-P were not affected by the seasons, but that of T-N in winter and spring were decreased than the other seasons.

A Study on the Improvement of Treatment Efficiency for Nitrogen and Phosphorus in Livestock Treatment System Using Constructed Wetlands (인공습지 축산폐수처리시스템에서 질소 및 인 처리효율 향상 방안)

  • Seo, Dong-Cheol;Park, Jong-Hwan;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Kim, Hyun-Ook;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.434-441
    • /
    • 2011
  • To improve T-N and T-P removal efficiencies, removal efficiencies of pollutants in full-scale livestock wastewater treatment plant by natural purification method with water plant filtration and activated sludge beds were investigated under different re-injection rates and injection methods of livestock wastewater. The removal rates of COD, SS, T-N, and T-P in effluent in full-scale livestock wastewater treatment plant were in the order of 30% < 70% ${\leq}$ 100 % at different re-injection rates. The removal rates of pollutants in effluent in full-scale livestock wastewater treatment plant were higher as re-injection rate of livestock wastewater increased. Removal rates of COD, SS, T-N, and T-P by continuous injection were slightly higher than those by intermittent injection method in full-scale livestock wastewater treatment plant. Removal rates of COD, SS, T-N, and T-P by continuous injection method in full-scale livestock wastewater treatment plant with water plant filtration and activated sludge beds were 99.5, 99.8, 99.0 and 99.8%, respectively.