• Title/Summary/Keyword: 소규모정수장

Search Result 2, Processing Time 0.017 seconds

Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration (공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가)

  • Kim, Jeong-Hyun;Bae, Chul-Ho;Kim, Chung-Hwan;Park, No-Suk;Lee, Sun-Ju;Anh, Hyo-Won;Huh, Hyun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.