• Title/Summary/Keyword: 소결성

Search Result 886, Processing Time 0.024 seconds

Maturation, Sex Ratio and Sex-reversal of Red Spotted Grouper, Epinephelus akaara (붉바리의 성숙과 성비 및 성전환)

  • Lee, Chang-Kyu;Hur, Sung-Bum;Ko, Tae-seung;Park, Seung
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.573-580
    • /
    • 1998
  • Red spotted grouper, Epinephelus akaara is distributed in the south and west coasts of Korea. The natural stocks of the fish are decreasing sharply year by uear because of reckless overfishing. This research was carried out to understand general informations on maturation, sex composition and sex-reversals of the fish. Annual fishing uields of red spotted grouper in the castal area of Byonsan Peninsular of Kora decreased over 10% from 1992 to 1994. The main fishing season was from May to July with fishing gear of Hand-lines. Gonadosomatic index (GSI) and condition factor were highest on early and late July, respectively, thus main spawning reriod was assumed from late July to early August. The relationship between total length (X) and body weight (Y) for wild adults was represented as a regression, Y=$0.0169X^{2.9705}$, ($r^2$=0.96). Frequency of sex of wild red spotted gouper showed that the number of female below 38cm in total length was more than that of male, and hermaphrodite mainly occurred from 28cm to 32cm in total length the frequency of male and female were almost same. Also hermaphrodite occurred mainly between 25~29cm. Sex reversal ration of the adults reared in a tank for a year with different sexual compositions revealted that the frequency of female reversed from male was more than that of male reversed from female at 1:1 and 1:2 stocking densities of female and male, respectively. Also, about 20% of female was reversed to male when all females were reared. And the size of the fish reversed to male was larger than that of non-reversed female.

  • PDF

Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material (다공성 $ZrTiO_4$ 재료의 제조 및 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Cordierite has a very low thermal expansion coefficient, but has problem that it has a weak mechanical strength and is apt to be attacked by acid such as sulfur for using as a diesel particulate filter support. The physical properties of $ZrTiO_4$ modified with $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3\;and\;Nb_2O_5$ were investigated with XRD, SEM, UTM and thermal expansion, etc. in this paper. $ZrTiO_4$ powder was synthesized as a monoclinic structure with processes that starting materials of $TiO_2\;and\;ZrO_2$ were mixed with ball mill and calcined above $1240^{\circ}C$ for 3 hr. Additive modified $ZrTiO_4$ specimens for flexural strength and thermal expansion measurement were obtained by mixing $ZrTiO_4$ powder with additives, pressing and firing at $1300^{\circ}C$ for 3 hr. The porosity of additive modified $ZrTiO_4$ decreased monotonically with increasing additive content by 5 wt% regardless of additive types and saturated for further increase of additive by 10wt. The flexural strength of $Al_2O_3$ (5, 10 wt%) modified $ZrTiO_4$ shows a large increase, but that of other additives modified $ZrTiO_4$ decreased. The thermal expansion coefficient of additive modified $ZrTiO_4$ except $Nb_2O_5$ decreased continuously with the content of additive. In particular, the lowest thermal expansion coefficient of $ZrTiO_4$ was obtained for the additive of $SiO_2$.

The Preparation and Property of Dye Sensitized Solar Cells using TiO2 (TiO2를 이용한 염료감응형 태양전지의 제조 및 특성)

  • Kim, Gil-Sung;Kim, Young-Soon;Kim, Hyung-Il;Seo, Hyung-Kee;Yang, O-Bong;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.179-186
    • /
    • 2006
  • Two types of $TiO_2$, nanotube and nanoparticle, were used for the mesoporous coatings by doctor blade technique followed by calcining at $450^{\circ}C$. The coatings were used as working materials for dye-sensitized solar cells (DSCs) later on and their photovoltaic characterization was carried out. The nanoparticle was synthesized from hydrogen titanate nanotube by hydrothermal treatment at $180^{\circ}C$ for 24 hr. The solar energy conversion efficiency (${\eta}$) of DSCs prepared by this nanoparticle reached 8.07% with $V_{OC}$ (open-circuit potential) of 0.81 V, $I_{SC}$ (short-circuit current) of $18.29mV/cm^2$, and FF (fill factor) of 66.95%, respectively. For the preparation of nanotube, the concentration of NaOH solution varied from 3 M to 5 M. In the case of DSCs fabricated with nanotubes from 3 M NaOH solution, the ${\eta}$ reached 6.19% with $V_{OC}$ of 0.77 V, $I_{SC}$ of $12.41mV/cm^2$, and FF of 64.49%, respectively. On the other hand, in the case of 5 M solution, the photovoltaic ${\eta}$ was decreased with 4.09% due to a loss of photocarriers. In conclusion, it is demonstrated that the solar energy conversion efficiency of DSCs made from $TiO_2$ nanoparticle showed best results among those under investigation.

Fabrication and Oxygen Permeation Properties of ${La_{1-x}Sr_{x}B_{1-{\gamma}}Fe_{\gamma}O_{3-{\delta}}$(B=Co, Ga) Perovskite-Type Ceramic Membranes (${La_{1-x}Sr_{x}B_{1-{\gamma}}Fe_{\gamma}O_{3-{\delta}}$(B=Co, Ga) 페롭스카이트 세라믹 분리막의 제조 및 산소투과특성)

  • 임경태;조통래;이기성;한인섭;서두원
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.143-151
    • /
    • 2001
  • We have fabricated mixed-ionic conducting membranes, L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/ and L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ by the solid state method. Ceramic membranes consisted of perovskite-type structures and exhibited high relative density, >95%. Especially, dense L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ layer was coated on the L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes by using screen printing technique in order to improve oxygen ion flux. We measured oxygen ion flux on uncoated L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/, uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/, and coated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes. The L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/ membranes showed the highest flux, 0.26 mL/min.$\textrm{cm}^2$ at 90$0^{\circ}C$, after steady state had been reached. The oxygen flux of coated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes showed higher value, 0.19 mL/min.$\textrm{cm}^2$ at 95$0^{\circ}C$. This flux was as much as 2 or 3 times higher than those of uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes. 3-$\delta$/ membranes.X> 3-$\delta$/ membranes.membranes.

  • PDF

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.