• Title/Summary/Keyword: 소거 네트워크

Search Result 13, Processing Time 0.02 seconds

Flicker Prevention Using Byte-Inversion in OOK Modulated Visible Light Data Transmission (OOK변조된 가시광 데이터전송에서 바이트반전을 이용한 플리커 방지)

  • Lee, Junho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.579-585
    • /
    • 2020
  • In this study, we used byte-inversion transmission method to prevent the flicker of lighting source in a visible light data communication link. In the transmitter, the non-return-to-zero (NRZ) signal with 9.6 kbps was on-off keying (OOK) modulated with a 100 kHz square wave carrier and byte-inversion signal was added after each byte to make the average optical power of the light-emitting diode (LED) constant. In the receiver, we used a band-pass filter to eliminate the interference of the 120 Hz noise which was induced from the adjacent light lamps, and an OOK demodulator to recover the original NRZ signal This scheme is useful in constructing wireless data networks using the illumination of visible light lamps.

A Study on Policy Trends and Location Pattern Changes in Smart Green-Related Industries (스마트그린 관련 산업의 정책동향과 입지패턴 변화 연구)

  • Young Sun Lee;Sun Bae Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • Digital transformation industry contributes to the improvement of productivity in overall industrial production, the smart green industry for carbon neutrality and sustainable growth is growing as a future industry. The purpose of this paper is to explore the status and role of the industry in the future industry innovation ecosystem through the analysis of the growth drivers and location pattern changes of the smart green industry. The industry is on the rise in both metropolitan and non-metropolitan areas, and the growth of the industry can be seen in non-metropolitan and non-urban areas. In particular, due to the smart green industrial complex pilot project, the creation of Gwangju Jeonnam Innovation City, and the promotion of new and renewable energy policies, the emergence of core aggregation areas (HH type) in the coastal areas of Honam and Chungcheongnam-do, and the formation of isolated centers (HL type) in the Gyeongsang region, new and renewable energy production companies are being accumulated in non-metropolitan areas. Therefore, the smart green industry is expected to promote the formation of various specialized spokes in non-urban areas in the future industrial innovation ecosystem that forms a multipolar hub-spoke network structure, where policy factors are the triggers for growth.

Analysis on Efficiency of Hierarchical Structure for a Grid Transit Network (격자형 대중교통 노선망의 위계구조 효율성 분석)

  • Park, Jun-Sik;Go, Seung-Yeong;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.123-133
    • /
    • 2007
  • This study analyzed whether a transit network with hierarchy is efficient or not, and if transit network hierarchy has cost efficiency, then which condition guarantees the efficiency of the transit network hierarchy. The authors modeled the total cost of the transit network and suggested the conditions in which the transit network hierarchy has cost efficiency through comparing the cost of the transit network with and without hierarchy. The efficiency of transit network hierarchy is guaranteed when the travel cost savings induced by using a higher hierarchy transit network is larger than the increasing non-travel cost, which is the sum of access cost, waiting cost, and operating cost, induced by the introduction of a higher hierarchy transit network. This result is consistent with common sense and with the concept of cost and benefit analysis. If a passenger traveling within the area divided by a higher hierarchy transit network uses only a lower hierarchy transit network and the passenger traveling out of the area divided by the higher hierarchy transit network uses both lower and higher hierarchy transit networks, the travel demand using the higher hierarchy transit network is inversely proportional to the square of the line spacing. This means that the transit network becomes more efficient and small increases of travel demand guarantee the efficiency of the transit network hierarchy as the connectivity of the network becomes higher. This result shows that transit networks have economies of aggregation. This study is the first analytical research on transit network hierarchy and is expected to be a basis for numerical research. However, numerical research should complement this study, since analytical research has some limitations for considering a real network.