• Title/Summary/Keyword: 셀 스케쥴링

Search Result 50, Processing Time 0.025 seconds

Performance Analysis of Wireless ATM-MAC Protocol for Multi-class Traffic (멀티 클래스 트레픽을 위한 무선 ATM-MAC 프로토콜 성능 분석)

  • Jeong, Il-Gu;Lee, Sang-Cheon;Im, Deok-Bin;Lee, Hyeong-U;Jo, Chung-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.3
    • /
    • pp.363-370
    • /
    • 1999
  • 본 연구는 멀티미디어 서비스를 무선 ATM 환경에서 지원하기 위한 WATM MAC프로토콜을 제안하였다. 무선 환경에서는 값비싼 무선 자원을 효율적으로 사용하여 ATM 서비스가 요구하는 QoS를 만족시키는 것이 중요하다. 특히 대역폭의 사용이 가변적인 비디오 트레픽의 경우는 유연한 대역폭 할당 기능이 있어야 한다. 이를 위하여 본 연구에서는 VBR과 CBR을 구분하여 제어하는 셀 스케쥴링 방식을 제안하였다. 이때 VBR 트레픽은 GCRA 알고리즘을 사용하여 가변적인 트레픽 요구를 만족시키도록 하였따. 제안된 제어 기법의 성능을 알아보기 위해 모의 실험을 통하여 성능을 평가하였다.

Novel Beamforming and Scheduling Method for Interference Mitigation at Cell Edge (셀 경계 지역 간섭 완화를 위한 효율적 빔포밍 및 스케쥴링 방법)

  • Kim, Kyung Hoon;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.129-133
    • /
    • 2012
  • Coordinated multi-point transmission (CoMP) is a candidate technique for next generation cellular communications systems. One of the primary elements discussed in LTE-Advanced technology is CoMP, which can improve cell edge user data rate as well as spectral efficiency due to multiple input multiple output - orthogonal frequency division multiplex (MIMO-OFDM). We consider a system with multiple cells in which base stations coordinate with each other by sharing user channel state information (CSI), which mitigates inter cell interference (ICI), especially for users located at the cell edge. We introduce a new user scheduling method of ICI cancellation and the loss reduction of effective channel gain during the beamforming process, the proposed method improves the system sum rate, when compared to the conventional method by an average of 0.55bps/Hz in different number of total users per cell. It also outperforms the conventional method by approximately 0.38bps/Hz using different SNRs.

Performance Evaluation and Proposal of Cell Scheduling Method of Queue for the ATM Switch (ATM 스위치를 위한 대기행렬의 셀 스케쥴링 방식 제안 및 성능평가)

  • 안정희
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.51-61
    • /
    • 1999
  • A cell scheduling method of Queue for the ATM switch is proposed and simulated. In this paper, we present the cell scheduling method proper to the proposed queue and the improved queue with Queue Sharing(QS) structure for CBR, VBR, ABR traffic. The proposed QS structure minimizes the CLS(Cell Loss Ratio) of ABR traffic and decreases the CLR of bursty VBR traffic. Also we propose a cell scheduling method using VRR(Variable Round Robin) scheme proper to the high-speed(ATM) switch. The VRR scheme provides a fairness in terms of service chance for the queues in the ATM switch as well as QOS of their cell delay characteristic of CBR and VBR traffic, QOS of ABR CLR. The simulation results show the proposed method achieves excellent CLR and average cell delay performance for the various ATM traffic services in the Queue Sharing structure.

  • PDF

Collaborative Inter-Sector Scheduling Methods for Multi-User MIMO Transmission (다중 사용자 MIMO 전송을 위한 섹터 간 협력적 스케쥴링 방식)

  • Lee, Jiwon;Sung, Wonjin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.471-472
    • /
    • 2009
  • 여러 개의 섹터에 존재하는 안테나들로부터 협력적으로 신호를 전송 받는 다수의 사용자를 시간축에서 선택하는 스케쥴러의 성능을 시스템 전체 성능과 평등성 지표의 관점에서 개선하기 위하여 섹터 간의 협력을 고려할 수 있다. 기존 스케쥴러는 단일 셀에서의 사용자를 선택하는 방식으로 평등성 지표의 향상만을 고려하였으나 제안하는 섹터 간 협력 비례적 평등 스케쥴러는 동시 전송 사용자들 간의 채널의 직교성을 고려함으로써 시스템 전체 성능과 하위 사용자의 성능을 개선할 수 있다. 본 논문에서는 총 3 개의 인접한 섹터로 이루어진 분산 다중 안테나 시스템에 스케쥴러를 적용하고 그 성능을 분석한다. 섹터 간 협력 비례적 평등 스케쥴러는 각 섹터에 존재하는 사용자들의 채널 직교성을 활용하는 동시에 채널 변화 속도가 빨라짐에 따른 다이버시티 효과를 이용하여 시스템 전체 성능을 크게 향상시킨다. 또한 이 방식은 하위 사용자 성능이 우수한 수정된 협력 최대-최소 평등 스케쥴러의 하위 사용자 성능의 최고 99%의 성능을 달성한다.

An effegive round-robin packet transmit scheduling scheme based on quality of service delay requirements (지연 서비스품질 요구사항을 고려한 효과적인 라운드 로빈 패킷 전송 스케쥴링 기법)

  • 유상조;박수열;김휘용;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2191-2204
    • /
    • 1997
  • An efficient packet transmit scheduling algorithm should be able to allocate the resource to each connection fairly based on the bandwidth and quality of service requirements negotiated during the call admission procedure and it should be able to isolate the effects of users that are behaving badly. In this paper, we propose an effective round-robin packet transmit scheduling mechanism, which we call the delay tolerant packet reserving scheme (DTPRS) based on delay QoS requirments. The proposed scheme can not only provide fairness and but also reduce delay, delay variation, and packet loss rate by reserving output link time slots of delay tolerant packets and assigning the reserved slotsto delay urgent packets. Our scheme is applicable to high speed networks including ATM network because it only requires O(1) work to process a packet, and is simple enough to implement.

  • PDF

Adaptive scheduling scheme considering users' interference environment in TDD uplink cellular networks (시분할 이중화 상향 링크 셀룰러 네트워크에서 사용자의 간섭 환경을 고려한 적응적 스케쥴링 기법)

  • Cho, Moon-Je;Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1480-1485
    • /
    • 2017
  • A conventional max SNR scheme, which allocates uplink resources to the user with the highest gain of desired signal channel with a serving base station (BS), exhibits excellent performance in low interference environments. On the other hand, max SGIR scheme, which allocates resources by considering both the desired signal chanel gain and users' interference generating to neighboring BSs, outperforms the max SNR in high interference environments. The conventional two scheduling schemes exhibit optimal performance in different interference environments. Thus, we propose an adaptive scheduling scheme in order to overcome disadvantages of the conventional schemes. In the proposed scheme, a user is selected by max SNR and then the user's generating interference is compared with a pre-determined threshold value. If the generating interference is larger than a pre-determined threshold, then a user is re-selected by max SGIR policy. Monte-Carlo simulation results reveals that the proposed scheme outperforms the conventional schemes in various interference environments.

Study on a Neural UPC by a Multiplexer Information in ATM (ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구)

  • Kim, Young-Chul;Pyun, Jae-Young;Seo, Hyun-Seung
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.36-45
    • /
    • 1999
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. In this paper, Buffered Leaky Bucket which applies the same control scheme to a variety of traffics requiring the different QoS(Quality of Service) and Neural Networks lead to the effective buffer utilization and QoS enhancement in aspects of cell loss rate and mean transfer delay. And the cell scheduling algorithms such as DWRR and DWEDF for multiplexing the incoming traffics are enhanced to get the better fair delay. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate and buffer threshold are changed by the predicted values. The prediction of traffic loss rate by neural networks can enhance efficiency in controlling the cell loss rate and cell transfer delay of next incoming cells and also be applied for other traffic controlling schemes. Computer simulation results performed for random cell generation and traffic prediction show that QoSs of the various kinds of traffcis are increased.

  • PDF

Distributed Subchannel ON/OFF Scheduling by using Load Distribution for Cellular Femto Systems (셀룰러 펨토 시스템에서 부하 분산을 통한 분산적 부채널 ON/OFF 스케쥴링 기법)

  • Yoon, Kang-Jin;Kim, Young-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.471-479
    • /
    • 2012
  • In cellular femto systems, femto Base stations(f-BSs) can be installed unnecessarily and overcrowded in small areas. This will cause an interference problem and it can impact on the capacity, blocking probability, and coverage of femtocells in the shared channel systems. In this paper, we propose a load distribution scheme by using forced handover and probabilistic subchannel scheduling policy to resolve the problem. The proposed scheme operates in distributed manner though communication with neighboring f-BSs, and includes self-detection of overcrowded area and radio resource management based on measurements. We evaluate the performance of the proposed scheme in terms of average cell throughput and average throughput per users.

Dynamic Inter-Cell Interference Avoidance in Self-Organizing Femtocell Networks (자가구성 펨토셀의 동적 셀간간섭 회피 기법)

  • Park, Sang-Kyu;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.259-266
    • /
    • 2011
  • Femtocells are expected as the surest way to increase the system capacity with higher-quality links and more spatial reuse in future networks. In spite of their great potential, the system capacity is highly susceptible to network density because a large portion of users are exposed to inter-cell interference (ICI). In this work, we proposed a dynamic interference avoidance scheme in densely deployed cell environments. Our proposed DDIA (Distributed Dynamic ICI Avoidance) scheme not only works in a fully distributed manner, but also controls interference link connectivity of users with high agility so that it is suited for self-organizing networks (SONs). We introduced the concept of ICI-link and two-tier scheduling in designing the DDIA scheme. To avoid ICI without any central entity, our scheme tries to harmonize all base stations (BSs) with users adaptively. Through extensive simulations, it was shown that our proposed scheme improves the throughput of users by more than twice on average compared to the frequency reuse factor 1 scheme, who are exposed to ICI while maintaining or even improving overall network performance. Our scheme operates well regardless of network density and topology.

Area-efficient Interpolation Architecture for Soft-Decision List Decoding of Reed-Solomon Codes (연판정 Reed-Solomon 리스트 디코딩을 위한 저복잡도 Interpolation 구조)

  • Lee, Sungman;Park, Taegeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.59-67
    • /
    • 2013
  • Reed-Solomon (RS) codes are powerful error-correcting codes used in diverse applications. Recently, algebraic soft-decision decoding algorithm for RS codes that can correct the errors beyond the error correcting bound has been proposed. The algorithm requires very intensive computations for interpolation, therefore an efficient VLSI architecture, which is realizable in hardware with a moderate hardware complexity, is mandatory for various applications. In this paper, we propose an efficient architecture with low hardware complexity for interpolation in soft-decision list decoding of Reed-Solomon codes. The proposed architecture processes the candidate polynomial in such a way that the terms of X degrees are processed in serial and the terms of Y degrees are processed in parallel. The processing order of candidate polynomials adaptively changes to increase the efficiency of memory access for coefficients; this minimizes the internal registers and the number of memory accesses and simplifies the memory structure by combining and storing data in memory. Also, the proposed architecture shows high hardware efficiency, since each module is balanced in terms of latency and the modules are maximally overlapped in schedule. The proposed interpolation architecture for the (255, 239) RS list decoder is designed and synthesized using the DongbuHitek $0.18{\mu}m$ standard cell library, the number of gate counts is 25.1K and the maximum operating frequency is 200 MHz.