• Title/Summary/Keyword: 센서 geometry

Search Result 132, Processing Time 0.027 seconds

Optimal Design of Underwater SAW Devices (수중 SAW Device의 최적 설계법)

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.18-32
    • /
    • 1990
  • Deeping on purpose, SAW device may have to function while immersed in a liquid. Those who are familiar with SAW devices would anticipate difficulty since the propagating surface waves will tend to radiate energy into the liquid and hence suffer attenuation. Thus, to design an immerable SAW device, more attention and full information about the wave properites is required to overcome the attenuation and get the highest SAW generation eficiency. Though numerical simulation, the optimal geometry of underwater SAW devices, such as optimal piezoelectric crystal cut, SAW propagation direction and nondimensional wave number(ka) is determined to get the maximum SAW excitation efficiency, the minimum attenuation in propagation and pure mode propagation for all the modes of surface wave propagation. The design technique can be appliedto an arbitrary combination of a piezoelectric layer, a substrate and a liquid medium. In this paper, PZT and PVDF layers and a steel substrate are use for the solid medium. The technique can be easily employed for the design of underwater sensors and actuators for the applications, such as sonar marine antifouling, industrial and medical uses.

  • PDF

Real-time Data Enhancement of 3D Underwater Terrain Map Using Nonlinear Interpolation on Image Sonar (비선형 보간법을 이용한 수중 이미지 소나의 3 차원 해저지형 실시간 생성기법)

  • Ingyu Lee;Jason Kim;Sehwan Rho;Kee–Cheol Shin;Jaejun Lee;Son-Cheol Yu
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.110-117
    • /
    • 2023
  • Reconstructing underwater geometry in real time with forward-looking sonar is critical for applications such as localization, mapping, and path planning. Geometrical data must be repeatedly calculated and overwritten in real time because the reliability of the acoustic data is affected by various factors. Moreover, scattering of signal data during the coordinate conversion process may lead to geometrical errors, which lowers the accuracy of the information obtained by the sensor system. In this study, we propose a three-step data processing method with low computational cost for real-time operation. First, the number of data points to be interpolated is determined with respect to the distance between each point and the size of the data grid in a Cartesian coordinate system. Then, the data are processed with a nonlinear interpolation so that they exhibit linear properties in the coordinate system. Finally, the data are transformed based on variations in the position and orientation of the sonar over time. The results of an evaluation of our proposed approach in a simulation show that the nonlinear interpolation operation constructed a continuous underwater geometry dataset with low geometrical error.

A Study on Precision Rectification Technique of Multi-scale Satellite Images Data for Change Detection (변화탐지를 위한 인공위성영상자료의 정밀보정에 관한 연구)

  • 윤희천;이성순
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • Because satellite images include geometry distortions according to photographing conditions and sensor property, and their spatial and radiational resolution and spectrum resolution are different, it is so difficult to make a precise results of analysis. For comparing more than two images, the precise geometric corrections should be preceded because it necessary to eliminate systematic errors due to basic sensor information difference and non-systematic errors due to topographical undulations. In this study, we did sensor modeling using satellite sensor information to make a basic map of change detection for artificial topography. We eliminated the systematic errors which can be occurred in photographing conditions using GCP and DEM data. The Kompsat EOC images relief could be reduced by precise rectification method. Classifying images which was used for change detections by city and forest zone, the accuracy of the matching results are increased by 10% and the positioning accuracies also increased. The result of change detection using basic map could be used for basic data fur GIS application and topographical renovation.

Inertial Sensor Error Rate Reduction Scheme for INS/GPS Integration (INS/GPS 통합에 따른 관성 센서 에러율 감소 방법)

  • Khan, Iftikhar;Baek, Seung-Hyun;Park, Gyung-Leen;Kang, Sung-Min;Lee, Yeon-Seok;Jeong, Tai-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.22-30
    • /
    • 2009
  • GPS and INS integrated systems are expected to become commonly available as a result of low cost Micro-Electro-Mechanical Sensor (MEMS) technology. However, the current performance achieved by low cost sensors is still relatively poor due to the large inertial sensor errors. This is particularly prevalent in the urban environment where there are significant periods of restricted sky view. To reduce the inertial sensor error, GPS and low cost INS are integrated using a Loosely Coupled Kalman Filter architecture which is appropriate in most applications where there is good satellite availability. In this paper, we present the GPS/INS sensor Integration using Loosely Coupled Kalman Filter approach. We also compare the simulation results of Wander Azimuth Strapdown Mechanization Scheme with the reference values generated by the ZH35C trajectory simulator that is describe mathematically either by the geometry of the path, or as the position of the object over time.

Automatic Matching of Multi-Sensor Images Using Edge Detection Based on Thinning Algorithm (세선화 알고리즘 기반의 에지검출을 이용한 멀티센서 영상의 자동매칭)

  • Shin, Sung-Woong;Kim, Jun-Chul;Oh, Kum-Hui;Lee, Young-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • This study introduces an automatic image matching algorithm that can be applied for the scale different image pairs consisting of the satellite pushbroom images and the aerial frame images. The proposed method is based on several image processing techniques such as pre-processing, filtering, edge thinning, interest point extraction, and key-descriptor matching, in order to enhance the matching accuracy and the processing speed. The proposed method utilizes various characteristics, such as the different geometry of image acquisition and the different radiometric characteristics, of the multi-sensor images. In addition, the suggested method uses the sensor model to minimize search area and eliminate false-matching points automatically.

Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding (아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.871-877
    • /
    • 2008
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. Howeve, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis for the prediction of process parameters was used as the research method. And, the results of the prediction method were compared and analyzed.

Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation (원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents a physically-based haptic rendering algorithm for a deformable object based on visual information about the intervention between a tool and a real object in a remote place. The physically-based model of a deformable object is created from the mechanical properties of the object and the captured image obtained with a CCD camera. When a slave system exerts manipulation tasks on a deformable object, the reaction force for haptic rendering is computed using boundary element method. Snakes algorithm is used to obtain the geometry information of a deformable object. The proposed haptic rendering algorithm can provide haptic feedback to a user without using a force transducer in a teleoperation system.

  • PDF

Analysis on Mapping Accuracy of a Drone Composite Sensor: Focusing on Pre-calibration According to the Circumstances of Data Acquisition Area (드론 탑재 복합센서의 매핑 정확도 분석: 데이터 취득 환경에 따른 사전 캘리브레이션 여부를 중심으로)

  • Jeon, Ilseo;Ham, Sangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.577-589
    • /
    • 2021
  • Drone mapping systems can be applied to many fields such as disaster damage investigation, environmental monitoring, and construction process monitoring. To integrate individual sensors attached to a drone, it was essential to undergo complicated procedures including time synchronization. Recently, a variety of composite sensors are released which consist of visual sensors and GPS/INS. Composite sensors integrate multi-sensory data internally, and they provide geotagged image files to users. Therefore, to use composite sensors in drone mapping systems, mapping accuracies from composite sensors should be examined. In this study, we analyzed the mapping accuracies of a composite sensor, focusing on the data acquisition area and pre-calibration effect. In the first experiment, we analyzed how mapping accuracy varies with the number of ground control points. When 2 GCPs were used for mapping, the total RMSE has been reduced by 40 cm from more than 1 m to about 60 cm. In the second experiment, we assessed mapping accuracies based on whether pre-calibration is conducted or not. Using a few ground control points showed the pre-calibration does not affect mapping accuracies. The formation of weak geometry of the image sequences has resulted that pre-calibration can be essential to decrease possible mapping errors. In the absence of ground control points, pre-calibration also can improve mapping errors. Based on this study, we expect future drone mapping systems using composite sensors will contribute to streamlining a survey and calibration process depending on the data acquisition circumstances.

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.187-199
    • /
    • 2011
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The multi-channel dynamic pressure transducers were located on the combustor and inlet mixing section region to observe combustion pressure oscillation and difference phase at each dynamic pressure measurement results. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of coupled with the combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

  • PDF

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.