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Abstract

GPS and INS integrated systems are expected to become commonly available as a result of low cost
Micro-Electro-Mechanical Sensor (MEMS) technologv. However, the current performance achieved by low cost sensors is
still relatively poor due to the large inertial sensor errors. This is particularly prevalent in the urban environment where
there are significant periods of restricted sky view. To reduce the inertial sensor error, GPS and low cost INS are
integrated using a Loosely Coupled Kalman Filter architecture which is appropriate in most applications where there is
good satellite availability. In this paper, we present the GPS/INS sensor Integration using Loosely Coupled Kalman Filter
approach. We also compare the simulation results of Wander Azimuth Strapdown Mechanization Scheme with the reference
values generated by the ZH35C trajectory simulator that is describe mathematically either by the geometry of the path, or
as the position of the object over time.

Keywords : Micro-Electro-Mechanical Sensor(MEMS), Loosely Coupled, Kalman Filter,
Wander Azimuth Strapdown Mechanization.
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I. Introduction'

High accuracy and low cost are the two basic but
conflicting requirements to be considered for vehicles
requiring a navigation capability. The aim of this
research 1is to develop low-cost and accurate
INS/GPS aided inertial navigation system for land
vehicles. The needs of safety, traffic control, fleet
management, optimization of mass transit scheduling,
of Vehicle
Positioning Systems (AVPS) for land vehicles such

as buses, trains, cars, etc. The prime purpose of

require  development Autonomous

these systems is to determine continuously, in real
time, the with
satisfactory level of accuracy and reliability.

In recent years, several AVPS systems have been
developed that uses Global Positioning System (GPS).
However, application of GPS in urban conditions
presents serious problems due to blocking of satellite
signals by tall buildings and trees. Reflection of the
satellite from the buildings
additional errors. Also, GPS is unavailable in tunnels
and for subway trains.

An alternative to the GPS approach is dead
reckoning. Dead reckoning is based on continuous

position of moving vehicles

signals mtroduces

measurements of vehicle’s heading and speed or
traveled distance which are used to compute
trajectory. These systems require initialization, iLe.
starting position of the vehicle must be provided to
the AVPS. Several existing dead reckoning systems
use various sensors to measure direction of vehicle’s
motion. Specialized form of dead reckoning is Inertial
Navigation System. Inertial navigation is based on
measurements of the acceleration and the angular
rotation of the vehicle by accelerometers

gyroscopes respectively[l].

and

The high cost of inertial sensors and strict
maintenance requirements restricted applicability of
the inertial navigation systems in the past to
high-end military applications. They have been used
for applications where their utilization was justified

by the unique system requirements. Recent advances
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the MEMs  based
inexpensive and small inertial sensors lead to the

n development relatively
development of inertial navigation systems (INS) for
civilian land vehicles. Inertial navigation system
calculates the velocity and position of a vehicle by
integrating the measurements of gyroscope and
accelerometer. Since MEMS based IMU has inherent
sensor biases and drifts, so when we integrate the
measurements of gyroscope and accelerometer, the
error also gets integrated and the error starts to
accumulate and the position accuracy reduces with
passage of time and the system becomes unstable.
A of an INS with GPS

advantageous. It provides position estimates at a

combination is
higher update rate and a smaller position error than a
stand-alone INS or GPS system. Usually, the INS
acts as the main navigation system since it is self
contained, and if available, GPS position estimates are
used to correct the errors in the INS.

In this paper we have presented the GPS/INS
Integration Scheme using Loosely Coupled Kalman
Filter Algorithm. In Section II we have introduced
In Section III we
have discussed the Strapdown Inertial Navigation
System (SINS) Mechanization algorithm. In Section
IV we have presented the INS System Error Model.
In Section V we have presented Loosely Coupled
Kalman filter algorithm. In Section VI, we have
presented the simulation results of Wander Azimuth
Strapdown Inertial Navigation Mechanization Scheme
and loosely coupled Kalman filter algorithm.

the general navigation equations.

II. General Navigation Equations

Navigation mechanization refers to the equations
and procedures used with a particular inertial
navigation system in order to generate position and
velocity information. We begin our discussion by
noting that the differential equation of motion of
inertial navigation of vehicle relative to an inertial

frame can written in vector as’ >



24 INS/GPS S&o| mg

where R = geocentric position vector, V= velocity

of the wvehicle relative to the inertial frame
[VX Vy VZ]
A

gravitational acceleration due to mass attraction.

non-gravitational specific force, gm(R)

Now we wish to express the earth centered inertial
acceleration in terms of the specific force and the

gravitational acceleration.
R'=Cp A"+ g, (R)

We need to refer the position and velocity of the
vehicle to an earth-fixed coordinate system which
rotates with the earth.

[d—R} ={ﬁ} +QXR=V+QxR
a |, Ldt]|;

V=V;+ Vy/ +Vx (4)

Where (2 is the angular rate of the earth relative to the
inertial frame. V is the true velocity of the vehicle
with respect to the earth. It should differentiating Eq.
(4) with respect to the inertial coordinates.

|

The output of the accelerometer gives quantities

d’R
dt*

=[d—V} +QXV +QX(QXR)
; ar |,

5)

that are measured along the platform (or system
Differentiation
components is therefore carried out with respect to

axes). or integration of these
the platform axes. The derivative of the velocity V'
with respect to the platform axes is an essential
quantity and can be related to the derivative with

respect to inertial space by the expression.
[ﬂ} {EK} roxv
ar |, ar |,

Where w is the angular rate of the platform with
respect to inertial space. Substituting Eq. (6) into Eq.

(6)
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(5) result in

Eanl

‘Z_ﬂ F{(@+Q)XV + QX (2 XR) (7

Substituting Eq. (7) into Eq. (2) gives the
expression
av
A={-&—} +(0+Q)XV +QxX(QXRY~g,(R) (8)
tlp

Since the centripetal acceleration of the earth term
Qx(2xR) is a function of position on the earth only
it can be combined with the mass attraction gravity

term to give the apparent gravity vector as
III. SINS Mechanization

INS mechanization is the process of determining
the navigation states (position, velocity and attitudé)
from the raw inertial measurements through solving
the
motion. IMU measurements include three angular rate

differential eguations describing the system

components provided by the gyroscopes and denoted

by the 3x1 vectors w’

as three linear
by the

accelerometers and denoted by the 3x1 vector f b.

well

acceleration components provided
Mechanization is usually expressed by a set of
differential equations and typically performed in the
local level frame defined by the local east, north and

ellipsoid normal ™.

D—lvl
Vo= ;fb"(zgell"'ge]z)vl"'gl (13
M R(Q;-Q)
Where
7' is the position vector in the local level frame

including the latitude 1, the Longitude (M), and the
ellipsoidal height (h)

v! is the velocity vector in the local level frame

(vea:t 4 vnarth * vup )
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v = ((Ry +h). Acos @, (Ry, +h). 3, 1) (14)

sz is the transformation matrix from body to local

frame as a function of attitude components

g’ is the gravity vector in the local level frame

g =G¢-QLaolr (15)

Q.9 are the skew-symmetric matrices of the

angular velocity vectors @, @ respectively.

@, = af, - Rdl, (16)
a)g) = _f;._. d (17)
D™' is a 3x3 matrix whose non zero elements

are functions of the user’s latitude ¢ and ellipsoidal
height (h).

0 VR, +h)y ©
D=\1/(Ry +h)cosg 0 0 (18)
0 0 0

Figure.2 shows the SINS mechanization block diagram.
First of all we have to convert the specific force
calculated by the accelerometer in body frame fb in to
Earth centered earth fix frame f°.

The computation involved to implement the system
described in equation (1) includes the processing of

angular rate measurements implied in the term 27

and the specific force term f° as shown in Fig.l.
Firstly, gyro drift corrections are applied to the
measured body rates with respect to inertial space by

using equation (17). The corrected angular rate

Iy 1,
Fig. 1.

SINS o7l &2 2¥c
SINS Mechanization Block Diagram.
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are then used to compute the
between the body and
navigation frames, which is required to transform the

measurements

transformation  matrix,

specific force measurements from the accelerometers.
This matrix, R}, be

continuously updated in order to follow the vehicle

transformation must
dynamics. As the specific force contains all the
the Coriolis
gravitational and centrifugal accelerations must be

sensed  accelerations, acceleration,
removed in order to extract correct vehicle velocity
and position. The Coriolis acceleration is a function of
the vehicle velocity while the sum of gravitational
and centrifugal acceleration is the gravity which can
be approximated by the free—air normal gravity. The
corrected specific force now represents the vehicle
acceleration, and can be integrated to get the vehicle

velocity increments.

IV. INS System Error Model

INS system error model is developed in the form
of a stochastic linear vector differential equation
given by

(1) = F()x(1) + GOw() (19)

where
x(t)=the error state vector
F(t)=the system dynamics matrix
G(t)=input matrix
navigation parameter error and the inertial sensor)

(coupling between the

wi(t)=vector of white noise forcing functions

The error state vector is

x=[64 8p 6h 6V, &V, OV, v, v, v,] (20)

oA, 0P & Oh are longitude, latitude &
height errors respectively; d Vg, §Vy & 0V, are the

where

errors in east, north & up components of velocities;
Vg Yy, are the east, north & up component of
attitude errors.

The INS error system dynamics matrix F can be
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defined as follows :*?

[0 poosg —p,/Roos¢ 1/Roos¢ O 0 0 0 o0 1

0 0 /R 0 VR 0 0 0 0

0 0 -, 0 0 1 0 0 0

0 4, 4, 4, @+Q ~a+Q 0 -f £

F=0 4, 4 20 K g L0 A

0 2Q¥; 4 2a, 20 0 ~fo Je 0

0 0 —2./R 0 -1/R 0 0 o —a

0 Q  -p/R /R 0 0 @ 0 a
10 4, /R tmg/R 0 0 a @ 0 ]
(21)

Notation Used in Matrix F

Ry=2QNRcos¢, N,=0sing, pp=—Vi/R,
pv=—Ve/R, py=—Vg/tan¢/R, wg= pg,
wy=pyt+ Ry, wz=pz+ 0z K;=V,/R,

Ay =2025Vy—02,V,) + ppyVa/cos?s,

Ayz = pzpp— pnIy Ay == pptang — Ky,
Agy =— 202, Ve— py Vil cos’¢,

Ass = prpz— peKy Agy =29/ R— (o3 + p3),
Agy =wy—pgang

The basic INS error model can be described by the
equation

(22)

5:15,: Fror+w;

The nine-state INS error model is the minimum
useful configuration for three-dimensional applications
and represents the baseline INS error model. In a
more complete INS model, the error dynamics are
driven additionally by gyroscope and accelerometer
ErTors.

V. Kalman Filtering

a. Algorithm
the INS
mechanization equations (see Equation 1) to vield the

The navigation algorithm integrates

parameters on the left-hand side, namely the position,
velocity, and attitude (PVA) of the vehicle. The
algorithm takes into account the Earth's rate of
rotation and gravity. The navigation algorithm by

itself is seldom useful since the inertial sensor errors

ThA
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{(mainly sensors biases) and the fixed-step integration
errors will cause the PVA solution to diverge quickly.
The navigation algorithm must account for these
error sources in order to be able to comrect the
estimated PVA. The most common estimation
algorithm used in integrated INS/GPS is the Kalman
Filter (KF). The KF exploits a powerful synergism
GPS and IMU measurements. In this
integration scheme, the GPS derived positions and

between

velocities are used as the update measurements for
the IMU derived PVA. The KF error state vector in
this case includes the navigation parameters as well
as the accelerometer and gyroscope etrror states. ™™

According to linear system theory, the dynamics of
a linear system can be represented be a state space

model given by

(23)

x=Fx+w

z=Hr+wv (24)

Where x is an nxl state vector, F is an nxn
system dynamic matrix , w is an nxl system noise
vector, z is an mxl observation vector, H is an mxn
design matrix, m is the number of measurement & n
is the number of the states Eq (6) is the dynamic
equation and Eq (7) is the observation equation.
Since the implementation of the estimation process is
done on a computer, the discrete form is generally
more convenient to use. Corresponding to equations

(6) and (7), the discrete system equations are derived

as follows:
Ty = Vps 184 Wy (25)
2, = Hr,+u; (26)

Where, k denotes epoch t,, ¢ is the nxn state
transition matrix, z, is the state vector at a discrete
epoch k, z, is the observation vector at a discrete
epoch k, w, & v, are system driving noise and
observation noise at epoch k.

For a stationary system, the state transition matrix
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and can be approximated by a Taylor series expansion
over a short time interval

¢= I+ FAt (28)

Where I is the identity matrix. Kalman filtering is
a two-step recursive process. The first step is
prediction by the system model ie.,

2, (=) = Yy oz () (29)

Pk(—)Z?ﬁk,kﬂpkﬂ(‘f')ﬂf;gkﬂ‘*‘Qkﬂ (30)

and the second step is the measurement update of the
system model. The elements of the update process are
as follow:

Kalman gain matrix:

K,=P,(-)HIHP,(-)BEI+ R, (31)

Error covariance update:

P (+) = [I- K,H,]| P, (-) (32)

State update:

o = @y (=) + Ky [z, — Hzy, ()] (33)
Where a:Ak is the estimated state vector

v, = 2, — Hyz,(—) is the innovation vector, P, is the
nxn covariance matrix of the state vector, R, is the
mxm covariance matrix of the measurement noise, K
is the nxm Kalman gain matrix & @, is the nxn
covariance matrix" %,

A priori information including the initial value of
the state x0 and the initial error covariance matrix,
P, will only influence the transit process of a
Kalman filter but not the
theoretically a priori information will not affect the
estimation optimality of the Kalman filter.

The measurement noise covariance matrix, R,

steady state, 1le,

which describes how well the measurement noise is
modeled, is one of the important factors related to the

(200)
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estimation quality. The system noise covariance, Q,
which defines the extent to which the prediction
should be trusted, is another important factor that
affects the estimation quality.

b. Loosely Coupled Mode

Inertial navigation systems in principle permit
autonomous operation. However, due to their error
propagation properties, most applications require
high-terminal accuracy and external aiding is usually
utilized to bound the INS errors. Fig. 2 shows a
loosely  coupled
feedback loop.

In a loosely coupled system, the GPS receiver has

integrated configuration with a

its own Kalman filter to process pseudo range or
Doppler measurements which are used to calculate
positions and velocities. GPS-derived positions and
velocities are combined with INS positions and
velocities to form the error residuals which are sent
to the navigation Kalman filter. This filter corrects
the INS in a feedback mamner, and the effects of
biases and drifts, as well as misalignment errors, will
be significantly decreased. The features of a loosely
o))

maximum use of off-the-shelf hardware and software

coupled aiding approach include: it allows

that can be easily assembled into a cascaded system
without major development; and (2) the feedback of
the error states to the inertial navigation system will
bound the INS errors.”!

_____________ !
Sensor Position, Velocity and |
Error _ __ Attitude Corrections |

a7 /Mechanization™, [
" ; \\\ Equation ///‘ (Pv)ms o
T /Navigation\ﬂ)m'"m

i Kalman Filter /
(PV)GPS —

e GP;\ / - Receive:\‘

"\\ S/ \ Kalman Filter /
e \\\,,,,,, - -
a2l 2 dAMZstel SF WY
Fig. 2. Loosely Coupled Integration Approach.

VI. Simulation Results

We have done simulation of wander azimuth
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strapdown inertial navigation scheme. We have used
ZH35C.exe simulator” to generate the SINS reference
mechanization trajectory & the raw data for
strapdown 1nertial navigation mechamztion scheme.
We have used the raw data generated by the
ZH35C.exe simulator in wander azimuth strapdown
mechanization scheme. We have implemented the
wander azimuth mechanization scheme using
MATLAB 701 m-file format. The plot in Fig 3
shows the North vs East trajectory plot in meters.
The plot in Fig4d. compares the Latitude values
generated by “wander azimuth mechanization
scheme” with the “reference trajectory” generated by
the ZH35C simulator. There is small latitude error in
the wander azimuth mechanization scheme design by
us. The plot in Fig5 compares the longitude values
generated by “wander azimuth mechanization scheme”
with the “reference trajectory” generated by the

ZH35C simulator. Longitude plot also shows very

nivS!

[y e
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small error.

The plot in Fig. 6 compares the simulation results
of “Loosely coupled Kalman filter” with the
“reference trajectory”. In Fig. 6, we have compared
the latitude trajectory estimated by the Kalman filter
v/s reference trajectory. We have also shown the
error plot in the same figure. From Fig. 6 we can see
that Kalman filter tracks the reference trajectory till
there is GPS signal outage occurs. As soon as GPS
measurement updates are absent due to blockage of
GPS signal, the Kalman filter estimate trajectory
starts to diverge from the reference trajectory.

There is GPS outage starting from 38sec to 49sec.
From Fig6 it is evident that Kalman filter trajectory
diverges whenever there is GPS signal outage occurs.
Similar results are shown for the longitude plot in
Fig. 7. There is GPS signal outage starting from
Alsec to H0sec. From Fig. 7 it is also evident that
longitude estimates from Kalman filter diverges
whenever there is GPS signal outage occurs.

VI. Conclusion

In this research paper we have compared the

results of “Wander Azimuth Strapdown Inertial
Navigation ~Mechanization ~ Scheme”  with  the
“Reference Strapdown inertial navigation

mechanization scheme”
“ZH35C.exe” trajectory simulator. The results from

the wander azimuth mechanization scheme designed

values generated by the
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by us is almost same with the reference values
generated by the simulator. Then we have shown the
simulation results of the loosely coupled Kalman
filter. The simulation results for

GPS/INS integration using loosely coupled Kalman
filter shows that the estimated values for latitude and
longitude have very small errors as compared to
standalone INS system. There is small error in
position due to outage of GPS signals.

VII. Future Work

To enhance the positional accuracy of GPS/INS
integrated system we are currently working on
GPS/INS integration using Newral Network based
loosely coupled Kalman filter algorithm. Neural
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network will compensate the errors caused by the
outage of GPS signals and enhance the positional
accuracy of current navigation system.
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