• Title/Summary/Keyword: 센서 통합

Search Result 867, Processing Time 0.027 seconds

A Study on Customized Smart Fire and Security System for one person household (1인 가구를 위한 맞춤형 스마트 화재 및 방범 시스템에 대한 연구)

  • Han, Hoonyoung;Kim, Gyunho;Ju, Minsu;Ko, Dongbeom;Kim, Jungjoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.295-304
    • /
    • 2019
  • This paper introduces a customized Smart Fire and Crime system for one person households. Recently, the number of one person household has skyrocketed due to the increasing number of one person household and the aging population. As a result, the demand for private security companies for one person household is increasing and smart security systems that are applied with rapidly evolving IoT and sensor technologies are also becoming a major issue. However, despite the increasing trend of one person households, the existing system focuses on multiple households, so that there are disadvantages of the one person households to operate in such a big system which operate separately. Therefore, in this paper, we design and implement a system that provides a personalized safety service for one person household that integrates a security system and a fire monitoring system. This will help prevent criminal activity in places where the police can not reach at a lower cost than using existing private companies, and help monitor the situation of the houses in real time.

A Security Nonce Generation Algorithm Scheme Research for Improving Data Reliability and Anomaly Pattern Detection of Smart City Platform Data Management (스마트시티 플랫폼 데이터 운영의 이상패턴 탐지 및 데이터 신뢰성 향상을 위한 보안 난수 생성 알고리즘 방안 연구)

  • Lee, Jaekwan;Shin, Jinho;Joo, Yongjae;Noh, Jaekoo;Kim, Jae Do;Kim, Yongjoon;Jung, Namjoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2018
  • The smart city is developing an energy system efficiently through a common management of the city resource for the growth and a low carbon social. However, the smart city doesn't counter a verification effectively about a anomaly pattern detection when existing security technology (authentication, integrity, confidentiality) is used by fixed security key and key deodorization according to generated big data. This paper is proposed the "security nonce generation based on security nonce generation" for anomaly pattern detection of the adversary and a safety of the key is high through the key generation of the KDC (Key Distribution Center; KDC) for improvement. The proposed scheme distributes the generated security nonce and authentication keys to each facilities system by the KDC. This proposed scheme can be enhanced to the security by doing the external pattern detection and changed new security key through distributed security nonce with keys. Therefore, this paper can do improving the security and a responsibility of the smart city platform management data through the anomaly pattern detection and the safety of the keys.

A Study on the Improvement of Reliability of Line Conversion Monitoring System using CCTV Camera (CCTV카메라를 활용한 선로전환감시시스템의 신뢰성 향상에 관한 연구)

  • Moon, Chae-young;Kim, Se-min;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.400-402
    • /
    • 2019
  • The electric point machine, which is used for the control of the turnout used to change the track of the train, is very important in the railway system. Various wired and wireless real-time monitoring systems are used to check the status of the point machine, but there is a possibility of malfunction due to sensor or network error. In this paper, a redundant monitoring system was designed that incorporates the point machine monitoring system and the CCTV camera control system to double check the operation of the point machine. In the point machine monitoring system, the operating state of the railway converter is monitored, alarmed and transmitted over the network. The CCTV camera control system, which received this information, was required to record the status of the turnout and the point machine in question and send it to the administrator. The manager of the railway line can check the conversion status of the railway through the monitoring screen for the railway line switcher first, and then confirm the switching status directly through the CCTV camera image, thereby improving the reliability of the point machine operation. It will also enable the safe and efficient operation of personnel for management. It is expected to contribute to preventing a derailment caused by a malfunction of the point machine.

  • PDF

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Progress in Nanofiltration-Based Capacitive Deionization (나노여과 기반 용량성 탈이온화의 진전)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.87-95
    • /
    • 2024
  • Recent studies explore a wide array of desalination and water treatment methods, encompassing membrane processes such as reverse osmosis (RO), nanofiltration (NF), and electrodialysis (ED) to advanced capacitive deionization (CDI) and its membrane variant (MCDI). Comparative analyses reveal ED's cost-effectiveness in low-salinity scenarios, while hybrid systems (NF-MCDI, RO-NF-MCDI) show improved salt removal and energy efficiency. Novel ion separation methods (NF-CDI, NF-FCDI) offer enhanced efficacy and energy savings. These studies also highlight the efficiency of these methods in treating complex wastewater specific to various industries. Environmental impact assessments emphasize the need for sustainability in system selection. Additionally, the integration of microfabricated sensors into membranes allows real-time monitoring, advancing technology development. These studies underscore the variety and promise of emerging desalination and water treatment technologies. They provide valuable insights for enhancing efficiency, minimizing energy usage, tackling industry-specific issues, and innovating to surpass conventional method limitations. The future of sustainable water treatment appears bright, with continual advancements focused on improving efficiency, minimizing environmental impact, and ensuring adaptability across diverse applications.

Shipborne Mobile LiDAR(Light Detection and Ranging) System for the Monitoring of Coastal Changes (해안지형 모니터링을 위한 해상모바일라이다 지형 측정 시스템 구축)

  • Kim, ChangHwan;Kim, HyunWook;Kang, GilMo;Kim, GiYoung;Kim, WonHyuck;Park, ChanHong;Do, JongDae;Lee, MyoungHoon;Choi, SoonYoung;Park, HyeonYeong
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land. Regular monitoring of coastal changes is essential at key locations with such volatility. But the survey method of terrestial LiDAR(Light Detection and Ranging) system has much time consuming and many restrictions. For effective monitoring coastal changes, KIOST(Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system, installed in a research vessel, comprised a land based LiDAR(RIEGL LMS-420i), an IMU(MAGUS Inertial+), a RTKGNSS(LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land based LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. We conducted test measurements in the Anmok-Songjung beach around the Gangneung port. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

Study on the Mechanism of Manifestation of Ecological Toxicity in Heavy Metal Contaminated Soil Using the Sensing System of Earthworm Movement (지렁이 움직임 감지 시스템을 이용한 중금속 오염 토양의 생태독성 발현 메커니즘에 대한 연구)

  • Lee, Woo-Chun;Lee, Sang-Hun;Jeon, Ji-Hun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.399-408
    • /
    • 2021
  • Natural soil was artificially contaminated with heavy metals (Cd, Pb, and Zn), and the movement of earthworm was characterized in real time using the ViSSET system composed of vibration sensor and the other components. The manifestation mechanism of ecological toxicity of heavy metals was interpreted based on the accumulative frequency of earthworm movement obtained from the real-time monitoring as well as the conventional indices of earthworm behavior, such as the change in body weight before and after tests and biocumulative concentrations of each contaminant. The results showed the difference in the earthworm movement according to the species of heavy metal contaminants. In the case of Cd, the earthworm movement was decreased with increasing its concentration and then tended to be increased. The activity of earthworm was severely increased with increasing Pb concentration, but the movement of earthworm was gradually decreased with increasing Zn concentration. The body weight of earthworm was proved to be greatly decreased in the Zn-contaminated soil, but it was similarly decreased in Cd- and Pb-contaminated soils. The bioaccumulation factor (BAF) was higher in the sequence of Cd > Zn > Pb, and particularly the biocumulative concentration of Pb did not show a clear tendency according to the Pb concentrations in soil. It was speculated that Cd is accumulated as a metallothionein-bound form in the interior of earthworm for a long time. In particular, Cd has a bad influence on the earthworm through the critical effect at its higher concentrations. Pb was likely to reveal its ecotoxicity via skin irritation or injury of sensory organs rather than ingestion pathway. The ecotoxicity of Zn seemed to be manifested by damaging the cell membranes of digestive organs or inordinately activating metabolism. Based on the results of real-time monitoring of earthworm movement, the half maximal effective concentration (EC50) of Pb was estimated to be 751.2 mg/kg, and it was similar to previously-reported ones. The study confirmed that if the conventional indices of earthworm behavior are combined with the results of newly-proposed method, the mechanism of toxicity manifestation of heavy metal contaminants in soils is more clearly interpreted.