• Title/Summary/Keyword: 세형동검

Search Result 8, Processing Time 0.028 seconds

The Calendar Date of Pottery with Ring-Rim -Appearance Date of the Slim Bronze Dagger Culture and Ironware- (점토대토기의 실연대 -세형동검문화의 성립과 철기의 출현연대-)

  • Lee, Chang Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.48-101
    • /
    • 2010
  • This paper estimated the calendar date of pottery with ring-rim(粘土帶土器) with the radiocarbon dating. This was based on archaeological facts with comparing line relations and radiocarbon dates of Yayoi pottery(彌生土器). As a result, I understood that pottery with circle ring-rim(圓形粘土帶土器) appeared in BC 6c, pottery with triangle ringrim(三角形粘土帶土器) appeared at the time in BC 300 . Based on the calendar date and aspect of ironware and pottery in grave, I kept in BC 4c with appearance date of ironware. And I kept in BC 5c with appearance date of the slim bronze dagger culture. Korea and Japan common chronological order were built for the first time based on radiocarbon dates, line relations of pottery with ring-rim and Yayoi pottery. This is the calendar date to date back approximately 100~300 years from the existing the calendar date. Current periodization does not match in the calendar date when I built it newly. Therefore I suggested it as follows. Early iron age is from the first~middle part BC 4c to BC 100. And the latter half of Bronze age is from BC 6c to the front appearance of ironware. Then Songguk-ri type(松菊里式) becomes staudard type of pottery in the middle stage of Bronze age.

Provenance and Microstructures of an Ancient Korean Bronze Dagger (한국(韓國) 세형동검(細形銅劍)의 미세구조(微細構造) 및 원료산지(原料産地) 추정(推定))

  • Choi, Ju;Do, Jung Man;Kim, Soo Chul;Kim, Sun Tae;Eom, Tae Yoon;Kim, Jung-Bae
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 1992
  • An ancient Korean bronze dagger excavated from Yongjai-ri, Iksan-kun, presumed to be manufactured in the pre-historical age, was examined by means of chemical analysis, energy dispersive spectrometry, optical and scanning electron microscopy. Also the measurement of lead isotope ratios was carried out in order to predict the site where raw materials were produced. The composition was identified as 75.3% Cu, 17.1% Sn and 6.8% Pb which was a typical composition of Korean bronze dagger. The microstructure was consisted of ${\alpha}$ and (${\alpha}+{\delta}$) eutectoid. The (${\alpha}+{\delta}$) eutectoid can be easily corroded in comparison with ${\alpha}$. The segregation was frequently observed in the interior of the sample. According to the lead isotopes ratios, raw materials have possibility to be from North China.

  • PDF

Scientific Analysis and Provenance Study of Bronze Artifacts Excavated from Dongchon Site in Sunchang, Jeollabuk-do, Korea (전북 순창 동촌유적 출토 청동기의 원료 산지연구)

  • Bae, Go Woon;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • Lead isotope ratio of bronze artifacts excavated from Dongchon Site in Sunchang have determined by TIMS. As results of comparison lead isotope ratio of bronze objects with the provenance data of galenas of Korea, China, and Japan, the provenance of three material of bronze objects were turned out to originate from the southern and northern part of China. On the other hands, data were plotted either in zone 3 of the South Korean galena map. The results of these scientific analysis of bronze objects can be used as basic data in comparison researches on manufacturing technology, provenance of bronze objects to be found in the future.

Morphology and Characteristics of Corrosion of Archaeological Bronzes (출토 청동유물 부식의 형태학적 고찰 및 부식생성물의 특성 연구)

  • Lee, Eun-woo;Kim, So-jin;Han, Woo-rim;Hwang, Jin-ju;Han, Min-Su
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.4-15
    • /
    • 2013
  • The study of corrosion products generated by archaeological bronzes that have been buried for a long time can provide certain evidence that enables us to understand the natural corrosion process of bronze and helps us develop conservation and preservation methods. In the present study, the specimens taken from two bronze mirrors and three bronze swords were used to study the corrosion morphology and the related phenomena such as selective corrosion of ${\alpha}$ or ${\alpha}+{\delta}$ phases, decuprification, destannification, and secondary copper. Furthermore, corrosion development was discussed based on the ions distributed throughout the corrosion layers.

Material Characteristics and Provenance Interpretation of the Stone Moulds for Bronze Artifacts from Galdong Prehistoric Site, Korea (완주 갈동유적 출토 청동기 용범의 재질특성 및 산지해석)

  • Lee, Chan-Hee;Kim, Ji-young;Han, Su-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.387-419
    • /
    • 2005
  • Material characteristics and provenance interpretation of the raw materials for the stone moulds of bronze artifacts excavated in Galdong Prehistoric site were studied. The stone moulds are made of igneous hornblendite with coarse-grained holocrystalline textures. The surface color shows greenish grey to dark green with greasy luster. The value of magnetic susceptibility of the moulds ranges from 19.2 to 71.0 (mean ; $39.2{\times}10^{-3}$ SI unit).High value of magnetic susceptibility indicates high contents of magnetite as a ferromagnetic mineral and the wide range of the values are due to heterogeneous distribution of magnetite. These are characteristics of basic igneous rocks. The rock-forming minerals of the moulds mainly consist of amphibole, plagioclase and biotite. Pyroxene, chlorite and opaque minerals are also rarely present. A large quantity of carbon was detected on the dark black crust near the surface of the moulds by quantitative analysis. Geological field survey was carried out to identify a source of the raw materials of the stone moulds around Galdong site. Hornblendite or gabbroic rocks being similar to the moulds forming rock occur at Daeseongri, Sikcheonri and Gyodongri in Jangsoo, and Illdaeri in Namwon about 50 kilometers away from the site in a straight line. They have similarity with the moulds forming rock in magnetic susceptibility ranging from 16.1 to 72.4 (mean ; $39.9{\times}10^{-3}$ SI unit). Among those hornblendite or gabbroic rocks, one in Jangsoo area is the most similar to the moulds forming rock on the basis of petrological and mineralogical characteristics. Comparing normalized patterns of major, minor, rare earth and immobile elements contents of the moulds to them of hornblendite in Jangsoo area, geochemical evolution trend and behavior characteristics show affinities between them. It suggests that the moulds forming rock and hornblendite in Jangsoo area have been originated from cogenetic magma. This hornblendite is easy to engrave an inscription or detail graphics on the surface because of its softness, and has good thermal conductivity. Hornblendite in Sikcheonri, Jangsoo is particularly produced and used for stone wares until the present day. Therefore, it is probable that the stone materials of the moulds has been imported from Daeseongri, Sikcheonri and Gyodongri in Jangsoo area. However, it cannot be completely excluded the possibility that the material of the moulds was supplied from Illdaeri in Namwon area appearing the same type of hornblendite on a small outcrops. It is necessary to carry out further archaeological studies to identify several possibilities of migration process of raw materials.

Characteristics of Lead isotope ratios and Trace elements of Excavated Bronze weapons in Pre-historical Age (선사시대 출토 청동 무기류의 납동위원소비 및 미량원소 특성)

  • Kim, So Jin;Hwang, Jin Ju;Han, Woo Rim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • We examined component analysis and lead isotope ratio analysis to find out the relationship between the excavation and the production site of 25 bronze weapons from prehistoric ages. All 25 bronze weapons are ternary alloys of copper-tin-lead and lead is artificially added. The lead isotope ratios of 25 bronze weapons show that bronze are made by raw materials in the southern regions of the Korean Peninsula, including northern China. The raw materials of narrow-shaped bronze dagger are supplied in zone 1-3 and northern China. In addition, provenance of lead for bronze halberd and pearhead are the rest of the region except for zone 1 and zone 4. Silver are enriched in most samples and zinc and cobalt are deficient. Arsenic and antimony detected only specific samples and can be used as critical parameter for provenance study. Lead isotopes and trace elements of archaeological bronzes will provide conservation scientist with useful tool to study the provenance of raw materials

A new glimpse on the foundation of the Bronze Age concept in Korean archaeology (한국 고고학 성립 시기 청동기 연구에 대한 새로운 인식 - 윤무병(1924~2010)의 연구를 중심으로 -)

  • KANG, Inuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.154-169
    • /
    • 2021
  • The establishment of the Bronze Age is one of the most important achievements suggested by Korean archaeology shortly after liberation. There is no doubt that Moo-Byung Yoon is the representative figure, who refuted the ambiguous Eneolithic age (金石倂用期) created by Japanese scholars and settled the concept of the Bronze Age. In this article, the author takes a new look at Yoon's institutional role in studying the Bronze Age in Korea. Until now, Yoon's representative achievement has been his typology of the Slender dagger of the Korean Peninsula. However, it is not less important that Yoon also established the Bronze Age concept with the excavation of a dolmen and a Bronze Age subterranean dwelling in Oksok-ni, Paju during the 1960s. Of course, it was not a personal assignment for Yoon. He was aided by Prof. Kim Won-Yong's work, who had introduced newly excavated materials from North Korea and China; these materials gave some insight for establishing the Bronze Age concepts in the 1960 and 1970s. Kim's suggestion about the possibility of a Korean Bronze Age led to Yoon's refined typological study on Korea's bronze wares. However, Yoon's excessive schematic classification of artifacts and reliance on the Japanese chronology became an obstacle for making the Korean Bronze Age isolated from East Asia. As a result, it is regrettable that his research led to the "cultural lag" phenomenon of Bronze Age research. Meanwhile, Japanese archaeology, which had influenced Yoon, also faced a major change. In 2003, the Japanese archaeological community revised the Yayoi culture's beginning around the 1,000 BC. This means a shift in the perception that we should understand Japan's Bronze Age in the context of the East Asian continent. Of course, it is not appropriate to reevaluate or denigrate Yoon's research from the current view. Rather, it is necessary to recognize the limitations of Yoon's time and present a new path to research by combining the archaeological tradition of refining research on the relics he maintained with a new chronological view and a macro view of East Asian archaeology. This is why we should take a new glimpse into Yoon's research.