고객을 세분화하여 맞춤화된 서비스를 제공하는 것은 고객 관계 관리에 있어 중요하다. 빅데이터 분석 기법과 기계 학습 등을 활용한 분석 기법의 발전은 더욱 세밀한 고객 세분화를 가능케 했다. 하지만 새로운 분석 기법을 기업에서 효과적으로 적용하는 것은 여러 어려움이 존재한다. 본 연구는 특히 국내 보험 산업에서 데이터 분석 기법을 활용해 더욱 향상된 고객 세분화를 수행할 수 있는 방법에 대해 논의한다. 이를 위하여 실제 보험 설계사와의 심층 인터뷰를 통해 국내 보험 회사의 현상을 파악하고, 이를 기반으로 보험 산업에서 활용할 수 있는 가이드라인을 제시하고자 한다.
기업간의 경쟁이 심화되고 정보의 중요성에 대한 인식이 확대되어 가는 상황에서 다량의 데이터로부터 가치 있는 데이터를 추출하는 CRM 데이터 마이닝은 중대한 관심사가 아닐 수 없다. 본 연구는 데이터마이닝의 여러 활용 분야 중 고객세분화를 위해 최근 많이 사용되고 있는 데이터마이닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망 알고리즘 기법들을 비교하며, 이를 실제 아파트 고객의 데이터를 이용하여 검증하고자 한다. 따라서, 아파트 고객 세분화를 위한 데이터마이닝 수행시 기법 선택의 기준과 비교 평가의 기준을 제시하는 데 연구목적 있다.
본 논문은 균열선단 그리드 세분화기법을 소개하고 자연요소법을 이용한 균열해석에 이 기법을 적용함으로서 그 유효성을 고찰하였다. 유한요소법에 있어서의 국부적 h-세분화와 같이 높은 응력 특이성을 보이는 균열선단 주위를 따라 자연요소법 그리드를 국부적으로 세분화하였다. 본 논문에서 소개되는 그리드 세분화기법은 2단계로 구성되며, 1단계에서는 그리드 점들이 추가되고 2단계에서는 균열선단 절점을 공유하는 델라우니 삼각형들이 나뉘게 된다. 제안하는 그리드 세분화기법의 타당성과 균열해석에서의 유효성을 입증하기 위해 대칭 엣지 균열을 갖는 평면 변형률 상태의 사각 평판을 해석하였다. 수치해석 결과의 상대비교를 위해 균일한 자연요소 그리드를 이용한 균열해석도 수행하였으며, 균열선단이 세분화된 그리드는 균일한 그리드와는 달리 이론해와 조밀한 그리드와 유사한 균열선단 응력분포를 나타내었다. 또한, 총 그리드 절점수에 대한 해석결과의 전역 상대오차에서도 세분화된 그리드가 균일한 그리드에 비해 높은 수렴율 나타내었다.
적응적 hp-세분화 기법과 그 기법의 효과적인 구성방법을 포함한 새로운 적응적 유한요소 알고리즘의 기초이론 및 적용이 이 연구를 통해 제시되었다. 적응적 hp-세분화 기초의 유한요소기법은 적분형 르장드르 형상함수와 요소별로 불균등한차수의 분배 및 비정형적인 절점연결과 관련된 연속조건을 만족시킬 수 있는 제약조건을 필요로 한다. 따라서 요소간의 접합부분에서 적응적 hp-유한요소망의 연속성이 중요한 문제로 대두된다. 이러한 문제를 요소경계에 연속성 제약조건을 절점연결 사상행렬을 적용하여 해결하였다. 또한, 적분형 르장드르 형상함수의 계층성질을 이용하여 제시된 알고리즘의 효율적 정식화 방안을 제시하였다. 간단한 캔틸레버문제가 h-세분화, p-세분화 그리고 hp-세분화 방법에 의해 계산되었다. hp-세분화의 결과는 다른 방식의 세분화에 비해 보다 빠른 수렴성을 보여 주는 것이 확인되었다. 그러므로 제시된 hp-세분화 알고리즘은 실제문제에 효율적으로 적용될 수 있을 것으로 생각된다.
시장세분화를 위해 일반변수와 트랜잭션 기반 변수를 동시에 사용하는 하이브리드 방법이 널리 사용되고 있지만, 하이브리드 방법에는 일반변수의 기준에 따라 정확하게 세분화가 되지 않는 문제점이 존재한다. 본 연구에서는 이러한 문제점을 해결함과 동시에 상품 정보를 이용한 네트워크 분석을 활용하는 새로운 시장세분화 방법을 개발하는 것을 목표로 한다. QAP 상관관계분석을 이용하여 상품네트워크의 유사도를 계산하는 새로운 시장세분화 방법은 일반 변수 기준으로 시장을 명확하게 세분화하고, 상품 정보를 기반으로 하여 세분화된 집단 간의 구매패턴을 효과적으로 비교할 수 있도록 하는 장점을 갖고 있다. 본 연구를 통해 개발된 상품구매정보를 활용한 네트워크 기반 시장세분화 방법의 활용 가능성과 성과를 입증하기 위해 실제 운영중인 온라인 쇼핑몰의 고객정보와 상품구매정보를 수집하여 시장세분화 방법의 절차를 설명하고 결과를 제시한다. 본 연구에서 제안된 시장세분화방법은 기본적인 고객정보 및 상품구매정보를 이용하여 상품구매패턴이 유사한 고객 집단을 인구통계학적인 일반변수 기준으로 세분화할 수 있기 때문에 대다수의 온 오프라인 유통업체에서 폭넓은 활용이 가능할 것으로 기대된다.
본 논문에서는 인체의 골격 위치와 깊이 정보를 사용하여 주위 환경에 강건한 특성을 지니는 움직이는 사람 영역 검출 방법을 제안한다. 먼저 영상 내에서 인체의 골격 위치를 검출한 다음 인체 골격의 중심이 될 수 있는 지점에 대해 인체의 평균적 깊이 범위 내에서 깊이 세분화를 수행한다. 그리고 깊이 세분화를 통하여 검출된 사람 영역의 후보군에 대해 윤곽선 기반의 움직임 검출기법을 사용하여 후보군 내에서 움직이는 사람에 해당하는 특징점을 검출한다. 마지막으로 잡음 제거 및 움직이는 사람에 해당하는 영역 검출을 위하여 개선된 깊이 세분화 과정을 수행한다.
본 논문에서는 세라믹 소재 영상에 가우시안 필터링 기법을 적용하여 잡음을 제거하고, K-means 알고리즘을 적용하여 결함 영역을 세분화 한 뒤, 세분화된 결함 영역에 Max-Min 이진화 기법을 이용하여 결함 영역을 추출한 후, 형태학적 기법을 이용하여 잡음을 제거하고 결함을 추출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 방법보다 효율적으로 결함이 검출되는 것을 확인하였다.
세분화란 초기 원형 모델의 삼각형 메쉬를 여러 개의 작은 메쉬로 변환하는 기법으로, 간략화 된 모델을 다시 원상태로 표현하기 위해 사용된다. 기존의 보간에 의한 세분화는 전체 모델의 에지에 일률적으로 세분화를 적용하기 때문에, 효과가 적은 부분까지도 세분화가 수행하게 되어 효율이 떨어진다. 본 논문에서는 정점 변화율을 기반으로 에지를 선택하여 세분화를 수행한다. 따라서 원형 메쉬를 변환하여 세분화된 메쉬를 생성할 때, 모델의 각 부분들은 정점 변화율의 차이에 의해 서로 다른 세분화 정도를 가지게 된다. 이 과정을 통해 원형 모델의 곡률 특성이 반영된 세분화를 수행할 수 있게 되고, 전체 모델의 세분화 정도를 조정하는 것도 가능해진다. Abstract The subdivision is a mesh transformation, which makes an original triangle mesh to subdivided meshes. This method is used for recovering original model from simplified model. The existing subdivision based on interpolation is inefficient, because it is targeted for whole edges of mesh model. Therefore, this method applies to non-effective parts. In this paper the subdivision is executed by edge selection based on curvature. When original model is transformed to subdivided model by proposed method, the parts of model has different subdivision degrees by means of the averages of vertex curvature.Proposed method makes it enable subdivision, which deploy characteristics of curvatures of original model and adjusting a degree of subdivision in whole model.
기업들이 심화된 경쟁체제 속에서 고객에 대한 보다 심층적인 이해를 필요로 하고 정보기술의 발달로 각 요소활동내용의 데이터화가 가능해짐에 따라 CRM으로 대변되는 고객 정보의 전략적 활용이 매우 중요하게 되었다. 이를 위해 기업은 고객에 대한 이해를 바탕으로 고객관리 및 마케팅을 수행하기 위한 필수적인 도구인 고객세분화를 수행하고 있다. 본 연구에서는 신용카드고객의 카드사용행태에 근거하여 서로 유사한 사용행태를 보이는 고객군으로 세분화하는 과정을 소개한다. 고객이 실제로 카드를 사용하면서 발생시킨 거래정보에만 의존하여 고객세분화를 수행하였으며 이는 마케팅의 관점에서 상당히 의미 있는 내용이라 볼 수 있다. 고객세분화를 위하여 데이터마이닝기법인 k-평균군집방법과 최장연결법에 의한 계보적 군집방법을 활용하였다
본 연구에서는 국내 이학 및 공학 분야의 학술기관에 정보서비스를 제공하는 K연구소를 대상으로 고객의 니즈파악을 위한 탐색적 연구를 시도하였다. K연구소는 제공되는 학술정보 서비스에 대한 고객 만족도를 높이기 위한 일환으로 맞춤형 서비스를 구상하고 있으며, 이에 따라 고객 니즈 분석 및 고객세분화 연구를 시작하였다. 이는 최근 공공기관에서의 CRM도입이 활성화 되는 시점이라서 매우 시의적절한 것으로 평가된다. 파일럿 분석을 위해 사용된 기법은 데이터마이닝과 데이터웨어하우징 기법이다. 고객 세분화에 사용된 기법은 조직 관점의 고객가치와 고객 관점의 조직에 대한 가치를 동시에 고려한 '균형적 고객 세분화' 모형에 고객 수명주기 개념을 추가한 혼합적인 세분화 모형을 적용하였다. 분석 결과 K연구소에서는 산업에서 일반적으로 사용되는 고객세분화 기법보다는 '균형적 고객세분화' 모형과 데이터웨어하우스/OLAP을 이용한 '컨텐츠 도달관점'의 적용이 유력한 접근법으로 파악되었다. 본 탐색적 사례연구는 최근 CRM 영역에서 이슈가 되고 있는 '조직 고유의 CRM 모형 도출'에 하나의 유용한 지침을 제공해 줄 것으로 평가된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.