• Title/Summary/Keyword: 세라믹 캔들

Search Result 26, Processing Time 0.023 seconds

Particle Filtration by Ceramic Candle Filter at High Temperature Conditions (고온조건에서 세라믹 캔들필터에 부착된 입자제거)

  • 이동근;박석주;박영옥;유정인
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.473-474
    • /
    • 2003
  • 최근 수 십 년간 발전소의 연소효율은 급속히 향상되어왔으나 $CO_2$, NOx 등과 같은 온실 유해가스의 제어에 관한 심각한 문제점들을 직면한 상태이다. 발전공정에서 발생되는 온실 유해가스의 저감 방법으로 매체순환식 가스 연소발전 공정이 최근에 새로운 대안으로 제시되고 있다 그러나 매체순환식 가스연소시스템 내부의 bead상 매체입자들이 입자간 혹은 입자와 반응기 벽간의 충돌과 마찰에 의하여 마모가 되게 되고, 그 결과 원하지 않는 량의 마모입자가 배출가스와 함께 배출되게 된다. 세라믹 캔들필터는 고온고압 연소공정 등에서 배출되는 가스내의 입자상 오염물질을 회수 처리하는데 효과적인 장치로써 널리 개발되고 있다. (중략)

  • PDF

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Measurements of Dust Velocity Field around the Ceramic Candle Filter (세라믹 캔들 필터 주위의 분진 속도분포 측정)

  • Ko, Yong-Seo;Chung, Jin-Do;Kim, Seung-Tea
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.30-41
    • /
    • 1999
  • The experimental set-up with a 1m long ceramic candle filter of Schumacher(Germany) was built in this work. The dust velocity field around the filter was measured using PDPA. The effects of dust cake layer and dust inlet position on the dust velocity field were also analyzed. It was found that the filtration velocity decreases as the dust cake builds up on the filter. The filtration velocity largely decreases around the filters near the dust inlet since the dust cake develops fast there. The average dust velocity on the filter due to the pressure difference through the filter was measured to be 0.28m/s. More uniform dust velocity field around the filter was obtained when feeding dust in a lower position of the pressure vessel.

  • PDF

Fabrication and Characteristics of Diesel Particulate Filters(II) (Diesel Particulate Filter의 특성 및 제조방법(II))

  • Yang, Jin
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.191-202
    • /
    • 1998
  • The emission standards for diesel particulates have been continued to become tighter. This article reviews the pore and how to filtering characteristics and how to design the ceramic honeycomb filter which is generally used for diesel particulate filter. And the properties and fabrication methods of other particulate filters, i.e. ceramic fiber candle filter, ceramic foam filter, ceramic cross-flow filter and metal filter, are presented in this review. The results show that though the various filters have been developed and tested in the field, the more efforts are needed for the commercilaization of the diesel particulate filter.

  • PDF

Fabrication and Evaluation of Ceramic Candle Filter for Pressurized Fluidized-Bed Combustion (가압유동층 복합발전용 세라믹 캔들필터의 제조 및 성능평가)

  • 이상훈;이승원;이기성;서두원;한인섭;박석주;박영옥;우상국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.187-191
    • /
    • 2002
  • 현재 석탄의 액화 및 가스화에 관한 연구가 활발하게 이루어지고 있으며 경제성과 환경문제에 우수한 성능을 보이는 석탄가스화 복합발전 시스템(PFBC, Pressurized Fluidized-Bed Combustion)이 부각되고 있다. 가압유동층 복합발전 시스템은 약 6~10기압 및 석탄 연소열에 의한 750~90$0^{\circ}C$의 고온고압의 연소기체를 가스터빈에 사용하여 증기터빈과 함께 복합발전을 한다.(중략)

  • PDF

A Numerical Analysis of Pulse-Jet Cleaning Characteristics for Ceramic Filter System Design (세라믹필터 집진장치의 역세정 시스템 설계를 위한 유동해석)

  • 정재화;서석빈;김시문;안달홍;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.197-206
    • /
    • 2003
  • A numerical analysis of the pulse-jet cleaning characteristics in a porous ceramic candle filter system was performed. To obtain the detailed velocity and pressure distribution during the cleaning process in a porous filter system, the axi-symmetric compressible Navier-Stokes equations including energy conservation equation were solved by using the FLUENT code which adopts FVM (Finite Volume Method). The effects of pulse cleaning nozzle diameter, nozzle tip position, permeability of a porous ceramic candle filter, diffuser throat diameter, and cleaning pressure on the cleaning flow characteristics were investigated extensively.

Investigations on High Temperature Filtration System for Particle Removal using Ceramic Candle Filter in the Pilot Scale Vitrification Plant (유리화 공정에서의 세라믹 캔들 필터를 이용한 분진 제거목적의 고온 여과 시스템에 관한 연구)

  • 류보현;박승철;황태원;하종현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.391-392
    • /
    • 2003
  • 한전 원자력 환경기술원에서는 중ㆍ저준위 방사성폐기물 유리화 기술의 상용화 가능성을 입증하기 위한 유리화 실증설비를 건설하여 시험 중에 있으며 이 유리화 기술은 유도 가열식 저온로(Cold Crucible Melter, CCM)에 폐기물을 투입하는 기술로서 폐기물의 부피 축소 효과와 더불어 최종 고화물로 생성되는 폐기물의 침출율이 매우 낮은 장점을 지닌다. 이와 같은 유리화 공정은 기존의 소각처리에서와 같이 폐기물의 열적 산화과정에 의해 유해오염가스와 입자성 물질이 발생된다. 따라서 이를 처리하기 위해배기체 처리공정(Off Gas Treatment System, OGTS)을 설치하여 환경 배출기준(SO$_2$300ppm, NO$_2$ 200ppm, CO 600ppm, HCI 50ppm, 분진 100mg/Nm$^3$ 등)을 만족하도록 하였고 특히 입자성 물질은 후단 OGTS나 배관내 침적으로 인한 방사성 오염을 막기 위해 CCM 후단에서 효율적으로 제거되어야만 한다. (중략)

  • PDF

Development of Filtration System for Korean Model IGCC Demonstation Plant (한국형 IGCC 대용량 집진시스템 개발)

  • Park, Seok-Joo;Lim, Kyeong-Soo;Lim, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.812-815
    • /
    • 2007
  • Computational simulation has been performed to design the filtration system for Korea model IGCC demonstration plant. The filtration system for optimal design has four effective filters corresponding to the clusters composed of a group of ceramic candle filters. It was analyzed how the different entrance geometry influences the flow field and the particle behavior in the filtration system. The particle loading is minimum when the gas mixed with particles flows into the filter vessel with a shroud tube through a tangential inlet. However, the particle loading is maximum when the gas with particles enters the filter vessel through a normal inlet which a entrance tube extended from. By controling adequately both conditions of inflow, the filtration system can be operated optimally to prolong the filter life-time and to save the energy for cleaning filters.

  • PDF

Performance of High Temperature Filter System for Radioactive Waste Vitrification Plant (방사성폐기물 유리화 플랜트 고온여과시스템의 성능 특성)

  • Seung-Chul, Park;Tae-Won, Hwang;Sang-Woon, Shin;Jong-Hyun, Ha;Hey-Suk, Kim;So-Jin, Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.

  • PDF

Removal Technology of NOx Using V2O5/TiO2 Catalyst Impregnated Ceramic Candle Filters (바나디아 촉매담지 세라믹 캔들필터를 이용한 질소산화물 제거기술)

  • Lee, Dong-Sub;Park, Jin-Sick
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1077-1083
    • /
    • 2007
  • [ $V_2O_5/TiO_2$ ] catalyst impregnated ceramic candle filters are in principle, capable of performing shallow-bed dust filtration plus a catalytic reaction, promoted by a catalytic deposited in their inner structure. Pilot-scale $V_2O_5/TiO_2$ catalyst impregnated ceramic candle filters were prepared, characterized and tested for their activity towards the SCR reaction. The effect on NO conversion of operating temperature, gas hourly space velocity, amount of deposited catalyst, pressure drops and long-term experiment (life of catalytic filter) was determined. The following effects of $V_2O_5/TiO_2$ catalyst impregnated ceramic candle filters in SCR reaction are observed: (1) It increases the activity and widens the temperature window for SCR. (2) When the content of $V_2O_5$ catalyst increases further from 3 to 9wt.%, activity of NO increases. (3) NO conversion at first increases with temperature and then decreases at high temperatures (above $400^{\circ} over), possibly due to the occurrence of the ammonia oxidation reaction.