• Title/Summary/Keyword: 세라믹재료

Search Result 1,578, Processing Time 0.026 seconds

A Study of the Acoustic Microscope System by Large Aperture Probe (대구경 탐촉자를 이용한 초음파 현미경 시스템 연구)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.475-479
    • /
    • 2003
  • Traditional ultrasonic evaluation to detect micro/small surface cracks is the pulse-echo technique using the normal immersion transducer with high frequency, or the angle beam transducer with surface wave. It is difficult to make the automatic ultrasonic system that is to detect micro and small surface crack and position on the large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of transducer. The aim of this study using the high precision scanning acoustic microscope with 10MHz large aperture transducer was to display the real time A, B, C-scan for the automatic ultrasonic system in order to detect the existence and position of surface crack. The ultrasonic method with large aperture transducer was improved the scanning time and speed over 10times faster than traditional methods.

Characteristics of cordierite ceramics filled with alumina platelets (판상형 알루미나 첨가에 의한 코디어라이트의 미세구조 및 물성 변화에 대한 고찰)

  • 이상진;조경식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.292-298
    • /
    • 2002
  • Densified cordierite matrixes added alumina platelets were studied as a ceramic substrate material having a low thermal expansion coefficient, low dielectric constant and proper strength. Amorphous-type cordierite powders were filled with four kinds of alumina platelet powders in various compositions. All samples were sintered at $1300^{\circ}C$ for 2 h in an air atmosphere. Improved flexural strength of about 80 MPa, low dielectric constant of 5.0 at 1 MHz and low thermal expansion coefficient of $3.5 \times 10^{-6}/^{\circ}C$ were obtained by the control of the microstructure. Isolated micropores were formed in the matrix and the porosity was dependent on the platelet content and size. In the 10 vol% of alumina platelet content, the isolated micropores were 3~8 $\mu \textrm{m}$ in size, and an increase in dielectric constant by adding alumina platelet filler was inhibited by the micropores.

Preparation of Flexible and Light Thermal Insulating Ceramic Composites Using Foaming Technology (발포공정을 이용한 경량의 연질 세라믹 보온단열재의 제조)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.59-66
    • /
    • 2015
  • A new concept of an inorganic foaming process at low temperature was demonstrated for the production of inorganic thermal insulating materials with the properties of flexible light-weight, the advantages of organic-based thermal insulation material. The foaming process was proceeded by establishing a skeleton of the foam body by using inorganic fibrous sepiolite and aluminum silicate. A cavity was formed by the expansion of fibrous skeleton body, by the gas which was generated from foaming agent at low temperature. Then the multi-vesicular expanded perlite with low thermal conductivity was filled into the cavity in a skeleton of the foam body. Finally through these overall process, a new inorganic foamed body could be obtained at low temperature without the hot melting of inorganic materials. In order to achieve this object, various preparations such as fibrous sepiolite fibrillation process, heat treatment process of the fibrous slurry were needed, and the optimal compositional condition of slurry was required. The foam body produced showed the properties of flexible light-weight thermal insulation materials such as bulk density, yield strength, flexural strength, and high heat resistance.

A study on the measurement of thermophysical properties of ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$ and SiC series by a single rectangular pulse heating (방향파 펄스 가열에 의한 ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$, SiC 계열의 열물성치 측정에 관한 연구)

  • 차경옥;장희석;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.145-156
    • /
    • 1990
  • In this study, thermophysical properties of the engineering ceramic materials such as $Al_{2}$O$_{3}$, Si$_{3}$N$_{4}$ and SiC were measured b y a single rectangular pulse heating method. The values of thermal diffusivities, specific heats, and thermal conductivities were measured as a function of temperature ranging form room temperature to 1300K. The measured thermal properties of one group of ceramic material were compared with those of other group and discussed in detail in connection with the chemical composition. Thus, some criteria for thermal design with the engineering ceramic materials were proposed.

Evaluation of the Surface Crack by a Large Aperture Ultrasonic Probe (대구경 초음파 탐촉자를 이용한 표면균열 평가)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.180-185
    • /
    • 2004
  • Conventional ultrasonic examination to detect micro and small surface cracks is based on the pulse-echo technique using a normal immersion focused transducer with high frequency, or an angle-beam transducer generating surface waves. It is difficult to make an automatic ultrasonic system that can detect micro and small surface cracks and position in a large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of the transducer. In this study, a high-precision scanning acoustic microscope with a 10MHz large-aperture transducer has been used to assess the existence, position and depth of a surface crack from the real-time A, B, C scans obtained by exploiting the ultrasonic diffraction. The ultrasonic method with large aperture transducer has improved the accuracy of the crack depth assessment and also the scanning speed by ten times, compared with the conventional ultrasonic methods.

Simultaneous Sensing of Failure and Strain in Composites Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재의 파손 및 번형률 동시 측정)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.12-19
    • /
    • 2001
  • In aircraft composite structures, structural defects such as matrix cracks, delaminations and fiber breakages are hard to detect if they are breaking out in operating condition. Therefore, to assure the structural integrity, it is desirable to perform the real-time health monitoring of the structures. In this study, a fiber optic sensor was applied to the composite beams to monitor failure and strain in real-time. To detect the failure signal and strain simultaneously, laser diode and ASE broadband source were applied in a single EFPI sensor using wavelength division multiplexer. Short time courier transform and wavelet transform were used to characterize the failure signal and to determine the moment of failure. And the strain measured by AEFPI was compared with the that of strain gage. From the result of the tensile test, strain measured by the AEFPI agreed with the value of electric strain gage and the failure detection system could detect the moment of failure with high sensitivity to recognize the onset of micro-crack failure signal.

  • PDF

Development and Characterization of Ultrasonic transducers for High Temperature Contact Measurement (고온 접촉식 탐상용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok;Yoon, Nam-Won;Yoon, Dong-Jin;Ahn, Yoon-Kook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • Piezoelectric ultrasonic transducers for high temperature contact measurement were developed. These high temperature ultrasonic transducers (HTUT) consisted of bismuth titanate piezoceramic element whose Curie temperature is higher than $600^{\circ}C$, a backing material of the mixture of tungsten powder and inorganic binder, an inner alumina tube, a wear Plate and a housing. The operational frequencies or the HTUT were 1.04 and 2.08 MHz, respectively. Various commercially available couplants for high temperature were evaluated and compared. As a couplant for high temperature ultrasonic testing between HTUT and test specimen, gold epoxy was selected. The peak amplitude of pulse-echo signals from steel test specimen decreased with increasing temperature. The operational temperature of the HTUT reached up to $500^{\circ}C$ at which the continuous contact measurement was possible.

X-ray Induced Electron emission Spectroscopy

  • 송세안;이재철;최진학;김준홍;이재학;임창빈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.191-191
    • /
    • 1999
  • Extended X-ray Absorption Fine Structure (EXAFS)는 일반적으로 널리 사용하는 X선 회절분광기로 분석하기 힘든 chemical 또는 biological system의 structural analyses에 매우 유용한 분석방법이다. 특히 세라믹이나 유전체 비정질 재료의 미세 원자 구조에 관한 정보를 얻는데는 가장 강력한 분석방법중의 하나로 알려져 있다. 현재까지 대부분의 EXAFS 실험은 방사광 가속기를 이용하여 수행하였다. 그런데 신제품 개발의 순환주기가 급속하게 단축되는 현실적인 문제에 부응하기 위하여 실험실에서 EXAFS 실험을 수행할 수 있는 system을 개발하게 되었다. 개발한 XIEES 장비는 rotating anode 형의 18kW X-ray source, Optical system, Detection system, Stepping motor control system, vacuum system, Utility 등으로 구성하였다. Optical system에서의 6개의 Johanson type monochromator를 사용하여 분석가능한 x-ray energy range를 480eV에서 41keV까지 구현하였다. 이는 산소에서 우라늄까지 분석이 가능함을 의미하는 것으로, 산화물 연구에 많이 활용할 것으로 기대한다. XIEES는 투과 및 형광 X-ray를 검출할 수 있는 기능과 X-ray에 의해 여기 되는 모든(광전자, Aiger 전자, 이차전자)들을 검출할 수 있는 기능을 갖추고 있는데 이를 Total Electron Yield 측정이라고 한다. Total Electron Yield 측정은 박막 시료와 같이 투과가 되지 않는 시료를 분석할 뿐만 아니라, 경원소 분석, 낮은 에너지에서 흡수 edge가 나타나는 L-edge 측정을 통한 전자 구조 분석 등에 유용한다. 실험실용 XIEES 장비는 방사광가속기에 비해 x-ray flux가 크게 뒤지는 문제와 Total Electron Yield를 측정하는 데 있어서 source에서 나오는 x-ray beam이 진공용기 안에서 산란되어 이차전자를 여기하고 이 이차전자들이 전자검출기에 유입되어 측정에 영향을 미치는 background 문제 등이 있다. 이 두 가지 문제를 해결하기 위하여 Capillary tube를 사용하였다. 본 연구에서는 실험실용 XIEES 장비를 소개하고 이를 이용하여 Cu standard 시료에서 측정한 EXAFS 결과와 Capillary tube를 사용하여 얻은 x-ray flux 증진 및 background 제거 효과에 대해서 발표한다.

  • PDF

Microstructure Control of Reaction-Sintered Porous Mullite (반응소결된 다공성 뮬라이트의 미세구조 제어)

  • 조범래;윤상렬;강종봉
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.31-36
    • /
    • 2000
  • The effect of several important processing variables was investigated on formation of porous mullite with acicular microstructure. Experimental results demonstrated that microstructure and porosity of porous mullite are depending on concentration of $AlF_3$, holding time at $900^{\circ}C$ and starting material. Acicular mullite was developed by increasing amount of $AlF_3$ and holding time at $900^{\circ}C$. Mullite began to be formed at $1200^{\circ}C$ and the resultant microstructure sintered at this temperature is similar to those at higher temperatures. Porosity increases with increase in amounts of $AlF_3$ and holding time at $900^{\circ}C$ . Therefore, it is found that microstructure of reaction-sintered porous mullite can be controlled by governing the amount of $AlF_3$ and holding time at $900^{\circ}C$.

  • PDF

Proposal of Equation on Changable Performance Stroke (Δ h) and Radius of Curvature (ρ) According to the CERP Ply Orientation in PZTCA (CFRP 배향각에 따라 변화하는 PZTCA의 작동변위(Δ h)와 곡률반경(ρ)의 관계식 제안)

  • Hong Jung-Hwa;Yoon Kwang-Joon;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.318-327
    • /
    • 2006
  • Due to the diversified use of recent Piezoelectric Zirconate Titanate Composite Actuate. (PZTCA), various PZTCAs with the different ply orientation of the fiber layer have been applied. For this reason, the applicable bending moment equation is necessary even though the fiber layer ply orientation and the laminate configuration are changed. The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bernoulli-Euler bending moment (M) when the ply orientations of UD CFRP are changed. In conclusions, firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $(M^E)$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $(M^E)$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.