• Title/Summary/Keyword: 세기조절방사선치료(IMRT)

Search Result 117, Processing Time 0.035 seconds

Dosimetric Evaluation of Static and Dynamic Intensity Modulated Radiation Treatment Planning and Delivery (세기조절방사선치료에서 조사방법이 빔 파라미터 및 선량에 미치는 영향에 대한 연구)

  • Kim Sung-Kyu;Kim Myung-Se;Yun Sang-Mo
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2006
  • The two commonly used methods in delivering intensity modulated radiation therapy (IMRT) plan are the dynamic (sliding window) and static (stop and shoot) mode. In this study, the two IMRI delivery techniques are compared by measuring point dose and dose distributions. Using treatment planning system, clinical target volume (CTV) was created as a sphere with various diameter (3 cm, 7 cm, 12 cm). Two IMRT plans were peformed to deliver 200 cGy to the CTV in dynamic and static mode. The two plans were delivered on a phantom and central point dose and dose distributions were measured. The central point dose differences between static and dynamic IMRT delivery were 0.2%, 0.2% and 0.4% when the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. The differences In volume receiving 90% of the proscribed dose were 2.7%, 2.2%, and 2.9% for the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. For lung cancer patients, the differences in central point dose were 0.2%, 0.2%, and 0.4% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. The differences in volume receiving 90% of the prescribed dose were 2.7%, 4.8%, and 9.1% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. In conclusion, it was possible to deliver IMRT plans using dynamic mode of MLC operation although the loaves are In motion during radiation delivery.

  • PDF

The Comparison of Dose Distribution on Radiation Therapy between IMRT and VMAT in Modified Radical Mastectomy Patients (전유방절제술 환자에서 IMRT와 VMAT을 이용한 방사선치료시 선량 분포의 비교)

  • Ko, Hye-Jin;Kim, Young-Jae;Jang, Seong-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.225-232
    • /
    • 2014
  • Underwent on modified radical mastectomy(MRM) and radiation therapy, it affects increasing rates of chronic morbidity, because of including chest wall and internal mammary nodes(IMNs). It causes the high absorbed dose on heart and ipsilateral lung. Thus in this study, we compared dose distributions through utilizing the intensity modulated radiation therapy(IMRT) and the volumetric modulated arc therapy(VMAT). We selected 10 breast cancer patients at random who took MRM and radiation therapy. Treatment plannings were done by using IMRT and VMAT from each patient ranging supraclavicular lymphnodes(SCL) and IMNs. After that we analysed the planning target volume(PTV)'s conformity and absorbed doses on heart and lungs. As a results, PTV conformities were indicated the same patten(p<0.05) in both plans. In case of Lt breast cancer patients, the dose maximum regions of the heart were more lesser in VMAT technique rather than the IMRT(p<0.05). Also, the maximum dose areas of lungs were lesser in VMAT technique rather than the IMRT(p<0.05). Therefore, it would be safe to say that it is more effective way to adapt the VMAT technique than IMRT in such cases like involve IMNs in breast cancer patients.

A comprehensive comparison of IMRT and VMAT plan quality for orbital lymphoma (안와 림프종 환자의 방사선치료를 위한 세기조절방사선치료와 용적세기조절회전치료의 전산화 치료계획에 대한 고찰)

  • Yoo, Soon Mi;Ban, Tae Joon;Yun, In Ha;Baek, Geum Mun;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.281-287
    • /
    • 2014
  • Purpose : The purpose of this study is to compare the plan quality of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of orbital lymphoma. IMRT, partial single arc(SA) and partial-double arc(DA) VMAT plans for four patients with orbital lymphoma treated at our institution were used for this study. Conformity Index(CI), Paddick's Conformity Index(PCI) and Homogeneity Index(HI) of planning target volume(PTV) were used to evaluate dosimetric quality of each plan. The Monitor Unit (MU), treatment time and dose of ipsilateral lens from each type of plan were measured for comparison. Materials and Methods : The CI of PTV for IMRT, SA and DA were measured as 0.88, 0.86, 0.92. The PCI of DA was the lowest as 1.33. Also HI of DA was the lowest in measured plans as 1.15. Mean dose of lens, lacrimal gland, optic chiasm, the opposite optic nerve and both orbit was analyzed with V30, V20, V10, V5. The result showed that the lowest dose in IMRT highest in SA in opposite lens, lacrimal gland, optic nerve, orbit. Results : Treatment time and average MU of IMRT was about three times higher than SA. Conclusion : Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating orbital lymphoma.

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients (호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석)

  • Kim, Youngkuk;Lim, Sangwook;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Ro, Tae Ik
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2014
  • To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

Development of Film Verification as the QA of IMRT for Advanced Hepatoma Patients (간암 환자의 세기조절 방사선치료에서 임상적응 가능한 QA 기법의 개발)

  • Kim Myung-Se
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Hepatoma is one of 3 most common malignancies in Korea, the survival rate is not improved since last decades because of delayed diagnosis and limited treatment conditions. Radiation was one of treatment options but the impact on the survival is not remarkable. High dose exposure to target area was suggested for improved effect but low tolerance dose of normal liver tissue is the main limited factor. IMRT is the advanced form of 3DCRT, for focusing high dose on target with minimal dose to surrounding normal tissues. Motion of the tumor by respiration, cardiac pulsation and peristalsis is the main treatment harrier of IMRT for treatment of hepatoma patients. Development of QA technique for acceptable geometrical uncertainties and dose error on target volume is essential for IMRT in clinical treatment but proper QA technique is not yet developed. This study compared the verification film dosimetry with measured dose in phantom and calculated dose in planning computer on exactly same conditions of patient treatments. Within 3% dose differences between 3 groups were confirmed. We suggest that our verification QA technique is easy, economic, iterative and acceptable in clinical application for advanced hepatoma patients.

  • PDF

Decrease of Irradiated Volume using Rotational Treatment by Avoidance Sector in Radiation Therapy for Esophageal Cancer (식도암의 방사선치료에서 부분 각도에 의한 회전 치료를 이용한 조사체적의 감소)

  • Hwang, Chulhwan;Kim, Seong Hu;Koo, Jae Heung;Son, Jong Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.583-592
    • /
    • 2018
  • In this study, plans to apply 3D conformal radiotherapy, intensity modulated radiotherapy, and volumetric intensity modulated arc radiotherapy to esophageal cancer radiotherapy were compared. In particular, arc therapy was applied to reduce irradiated volume and spread of low-dose during intensity modulated radiation therapy and volumetric intensity modulated arc radiotherapy by limiting part of irradiated angle, in order to compare target doses and dose for surrounding normal tissues of the two methods and those of 3D conformal radiotherapy. No significant difference in target dose was found among the three methods. The 5 Gy volume(V5) of the lung showed 56.53% of conformal radiotherapy, 52.03% of intensity modulated radiotherapy, and 47.84% of volumetric modulated arc therapy(CRT-IMRT p=0.035, CRT-VMAT p<0.001, IMRT-VMAT p<0.001). The 10 Gy volume(V10) showed a significant difference in conformal radiotherapy 35.12%, intensity modulated radiotherapy 34.04%, and volumetric modulated arc radiotherapy 33.28%, showing significant difference in intensity modulated radiotherapy(p=0.018), volumetric modulated arc therapy(p=0.035), no significant difference in dose was found at 20 Gy volume. The mean dose and 20 Gy volume of the heart were not significantly different according to the treatment plan, but the 30 and 40 Gy volumes were 37.16% and 22.46% in the volumetric modulated arc radiotherapy, showing significant differences(p=0.028) in comparison with conformal radiotherapy. It is believed that, by limiting part of the irradiated angle during intensity modulated radiotherapy and volumetric intensity modulated arc radiotherapy, the irradiated volume and, thereby, the 5-10 Gy area and toxicity of the lung can be reduced while maintaining dose distribution of the target dose.

Study of $\textrm{IMFAST}^{TM}$ Segmentation Algorithm with CORVUS TPS for Intensity Modulated Radiation Therapy (세기조절 방사선 치료에서 CORVUS TPS를 이용한 $\textrm{IMFAST}^{TM}$ Segmentation Algorithm의 연구)

  • Lee, Se-Byeong;Jino Bak;Cho, Kwang-Hwan;Chu, Sung-Sil;Lee, Chang-Geol;Lee, Suk;Hongryll Pyo;Suh, Chang-Ok
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.181-186
    • /
    • 2002
  • The IMRT planning depends on the algorithm of each planning system and MLC performance of each Linac system. Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS (Nomos, U.S.A.) treatment planning system, LANTIS, PRIMEVIEW and PRIMART (Siemens, U.S.A) linac system. The optimization of CORVUS planning system with PRIMART is an important task to make a desirable quality treatment plan. Our Step & Shoot IMRT system uses Finite Size Pencil Beams (FSPB) dose model, simulated annealing optimization algorithm and IMFAST segmentation algorithm. We constructed treatment plans for four different patient cases with two basic beamlet sizes, 1.0$\times$1.0 $\textrm{cm}^2$ and 0.5$\times$1.0 $\textrm{cm}^2$, and four intensity steps, 5%, 10%, 20%, 33%. Each case's plan was evaluated with the dose volume histograms of target volumes and delivery efficiencies. The patient case of small target volume is sensitive at the change of intensity map's segmentation and it highlighted an effective treatment plan at marrow intensity step and small basic projection beamlet.

  • PDF

A Study on the Incidence of Side Effects according to the Number of Beams in Intensity-modulated Radiation Therapy for Prostate Cancer using 15 MV (15 MV를 이용한 전립샘암 세기조절 방사선치료 시 빔의 개수에 따른 부작용 발생률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.481-487
    • /
    • 2023
  • In this study, we analyzed the incidence of side effects of photoneutron dose according to the number of beams during intensity-modulated radiotherapy of prostate cancer using 15 MV. The radiation treatment plan design for intensity-modulated radiation therapy for prostate cancer was established with a prescription dose of 220 cGy per dose and a total of 7260 cGy for 33 treatments. The linear accelerator used in the experiment is Varian's True Beam STx (Varian, USA). Photoneutron dose was generated by using 15 MV energy in the planning target volume (PTV). The treatment plan was designed with IMRT 5, 7, and 9 portals using the Eclipse System (Varian Ver 10.0, USA). An optically stimulated luminescence albedo neutron dosimeter (Landauer Inc., USA) was used to measure photoneutron dose. IMRT 5 portals, 1.7 per 1,000, 7 portals, 1.8 per 1,000, 9 portals, 2.0 per 1,000 were calculated as the probability of experiencing side effects on the thyroid gland due to photoneutron dose. This study studies the risk of secondary radiation exposure dose that can occur during intensity-modulated radiation therapy, and it is considered that it will be used as useful data in relation to stochastic effects in the future.

Quality Assurance of Intensity Modulated Radiation Therapy: Site-Specific Results of Eulji University Hospital (질환별 세기조절방사선치료의 정도관리: 을지대학병원 임상결과)

  • Kim, Sung-Jin;Lee, Mi-Jo;Youn, Seon-Min
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Purpose: To analyze our quality assurance (QA) data for intensity modulated radiation therapy (IMRT) according to treatment site and to possibly improve QA for IMRT in Hospital. Materials and Methods: We performed QA on 50 patients (head and neck, 28 patients; Breast, 14 patients; Pelvis, 8 patients) for IMRT. The calculated dose from RTP was compared with the measured value film, gamma index, and ionization chamber for dose measurement in each case. Results: The point dose measurement results in 45 of 50 patients showed good agreement with the calculation dose (${\pm}3%$). The largest error measured thus far has been 3.60%, with a mean of only -0.17% (SD, 2.25%). Each treatment site showed an error rate of -0.13% (SD, 1.93%) for head and neck cases, -0.26% (SD, 2.79%) for breast cases, and 0.24% (SD, 2.44%) for pelvis cases. The gamma index verified with the error rate of head and neck cases (6%), breast (10%), and pelvis (6%), which corresponded to a tolerance of 3 mm (3% for the head and neck, 2%, for the breast 1% for the pelvis, and 0% in the region where the isodose curve was greater than 90%. Conclusion: We recognize the cause of errors for each treatment site of IMRT QA and so we maximize our efforts to reduce error and increase accuracy.

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.