• Title/Summary/Keyword: 세관소성 붕괴

Search Result 6, Processing Time 0.018 seconds

Evaluation of Plastic Collapse Pressure for Steam Generator Tube with Non-Aligned Two Axial Through-Wall Cracks (두 개의 비대칭 축방향 관통균열이 존재하는 증기발생기 세관의 소성붕괴압력 평가)

  • Moon Seong-In;Chang Yoon-Suk;Lee Jin-Ho;Song Myung-Ho;Choi Young-Hwan;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1070-1077
    • /
    • 2005
  • The $40\%$ of wall thickness criterion which has been used as a plugging rule is applicable only to a single cracked steam generator tubes. In the previous studies performed by authors, several failure prediction models were introduced to estimate the plastic collapse pressures of steam generator tubes containing collinear or parallel two adjacent axial through-wall cracks. The objective of this study is to examine the failure prediction models and propose optimum ones for non-aligned two axial through-wall cracks in steam generator tubes. In order to determine the optimum ones, a series of plastic collapse tests and finite element analyses were carried out for steam generator tubes with two machined non-aligned axial through-wall cracks. Thereby, either the plastic zone contact model or COD based model was selected as the optimum one according to axial distance between two clacks. Finally, the optimum failure prediction model was used to demonstrate the conservatism of flaw characterization rules for various multiple flaws according to ASME code.

Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks (두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델)

  • Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Kim, Nak-Cheol;Moon, Seong-In;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Failure Probability Estimation of Steam Generator Tube Containing Axial Through-Wall Crack (축방향 관통균열이 존재하는 증기발생기 세관의 파손확률 예측)

  • Moon Seong In;Lee Sang Min;Bae Sung Ryul;Chang Yoon Suk;Hwang Seong Sik;Kim Joung Soo;Kim Young Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.137-143
    • /
    • 2005
  • The integrity of steam generator tubes in nuclear power plant should be maintained sufficiently during operation. For sake of this, complicated assessment procedures are required such as fracture mechanics analysis, etc. The integrity assessment of tubes has been performed by using conventional deterministic approaches while there are many uncertainties to carry out a rational evaluation. In this respect, probabilistic integrity assessment is considered as an alternative method for integrity assessment. The objectives of this study are to develop an integrity assessment system based on probabilistic fracture mechanics and to predict the failure probability of steam generator tubes containing an axial through-wall crack. The developed integrity assessment system consists of three evaluation modules, which apply first order reliability method, second order reliability method and Monte Carlo simulation method, respectively. The system has been applied to predict failure probability of steam generator tubes and the estimation results showed a promising applicability of the probabilistic integrity assessment system.

Development of Optimum Global Failure Prediction Model for Steam Generator Tube with Two Parallel Cracks (평행한 두 개의 균열이 존재하는 증기발생기 세관의 최적 광범위파손 예측모델 개발)

  • Moon Seong ln;Chang Yoon Suk;Lee Jin Ho;Song Myung Ho;Choi Young Hwan;Kim Joung Soo;Kim Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.754-761
    • /
    • 2005
  • The 40\% of wall thickness criterion which has been used as a plugging rule of steam generator tubes is applicable only to a single cracked tube. In the previous studies performed by authors, several global failure prediction models were introduced to estimate the failure loads of steam generator tubes containing two adjacent parallel axial through-wall cracks. These models were applied for thin plates with two parallel cracks and the COD base model was selected as the optimum one. The objective of this study is to verify the applicability of the proposed optimum global failure prediction model for real steam generator tubes with two parallel axial through-wall cracks. For the sake of this, a series of plastic collapse tests and finite element analyses have been carried out fur the steam generator tubes with two machined parallel axial through-wall cracks. Thereby, it was proven that the proposed optimum failure prediction model can be used as the best one to estimate the failure load quite well. Also, interaction effects between two adjacent cracks were assessed through additional finite element analyses to investigate the effect on the global failure behavior.

Assessment of Steam Generator Tubes with Multiple Axial Through-Wall Cracks (축방향 다중관통균열이 존재하는 증기발생기 세관 평가법)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1741-1751
    • /
    • 2004
  • It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.